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Preface

The 11th RoboCup International Symposium was held during July 9–10, 2007
at the Fox Theatre in Atlanta, GA, immediately after the 2007 Soccer, Rescue
and Junior Competitions. The RoboCup community has observed an increas-
ing interest from other communities over the past few years, e.g., the robotics
community. RoboCup is seen as a significant approach to the evaluation of newly-
developed methods to many difficult problems in robotics. Atlanta was also the
location of a RoboCup@Space demonstration, which reflected the role of AI and
robotics in space exploration. Prior to the symposium, space agencies had ex-
pressed an interest in cooperating with RoboCup. A first step in this direction
was a successful demonstration at RoboCup 2007, which was accompanied with
an invited talk given by a leading scientist from the Japan Aerospace Exploration
Agency JAXA.

The symposium represented the core meeting for the presentation and discus-
sion of scientific contributions in diverse areas related to the main threads within
RoboCupSoccer, RoboCupRescue and RoboCupJunior. Its scope encompassed,
but was not restricted to, research and education activities within the fields of
artificial intelligence and robotics. The RoboCup International Symposium 2007
featured 18 full papers for oral presentation and 42 posters. These were selected
by the program committee from a total of 133 submissions, which meant an ac-
ceptance rate of 13,5% for full papers. Each paper was reviewed by at least three
program committee members, usually two experts and one person outside the
immediate area of the paper. After the initial reviewing period, papers that had
not received unanimous recommendations were discussed among the reviewers,
moderated by the Co-chairs, and a consensus was reached in all cases. The final
decisions were made by the Co-chairs.

In addition to the paper and poster presentations, which cover the state of
the art in a broad range of topics central to the RoboCup community, we had
two outstanding invited speakers, Takashi Kubota from the Institute of Space
and Astronautical Science, JAXA, Japan and Christine Lisetti from Florida In-
ternational University, USA. Kubota’s talk was about Japanese space activities
in the field of automation and robotics, and Lisetti talked about building com-
municative interfaces for natural human-robot interaction.

March 2008 Ubbo Visser
Fernando Ribeiro

Takeshi Ohashi
Frank Dellaert
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Rodrigo Palma-Amestoy



Table of Contents XI

An Application of Gaussian Mixtures: Colour Segmenting for the Four
Legged League Using HSI Colour Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Naomi Henderson, Robert King, and Richard H. Middleton

Model Checking Hybrid Multiagent Systems for the RoboCup . . . . . . . . . 262
Ulrich Furbach, Jan Murray, Falk Schmidsberger, and
Frieder Stolzenburg

Physical Simulation of the Dynamical Behavior of Three-Wheeled
Omni-directional Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

Hamid Rajaie, Reinhard Lafrenz, Oliver Zweigle,
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Instance-Based Action Models for Fast Action

Planning

Mazda Ahmadi and Peter Stone

Department of Computer Sciences,
The University of Texas at Austin
{mazda,pstone}@cs.utexas.edu

Abstract. Two main challenges of robot action planning in real do-
mains are uncertain action effects and dynamic environments. In this
paper, an instance-based action model is learned empirically by robots
trying actions in the environment. Modeling the action planning prob-
lem as a Markov decision process, the action model is used to build
the transition function. In static environments, standard value iteration
techniques are used for computing the optimal policy. In dynamic envi-
ronments, an algorithm is proposed for fast replanning, which updates
a subset of state-action values computed for the static environment. As
a test-bed, the goal scoring task in the RoboCup 4-legged scenario is
used. The algorithms are validated in the problem of planning kicks for
scoring goals in the presence of opponent robots. The experimental re-
sults both in simulation and on real robots show that the instance-based
action model boosts performance over using parametric models as done
previously, and also incremental replanning significantly improves over
original off-line planning.

1 Introduction

In many robotic applications, robots need to plan a series of actions to achieve
their goals. In comparison to classical planning, planning on-board robotic agents
introduces several new challenges, including (1) exceedingly noisy actions effects,
often with irregular noise distributions; (2) dynamically changing environments;
and (3) a need for real-time decision-making despite limited processing power.
In this paper, the problem of robot action planning in dynamic environments
with uncertain action effects is considered. We introduce an instance-based ac-
tion model that captures arbitrary distributions of action effects and use it for
action planning. To cope with dynamically changing environments, we introduce
an efficient on-line incremental replanning method that modifies the transition
model to account for the effects of other agents and then replans only for the
affected states.

Learning action models has been studied in classical planning (e.g. see [1,2]),
and also in probabilistic planning (e.g. see prioritized sweeping [3]). But those
methods use many trials to learn the model; instead we use domain heuristics
to learn the model with few experiments prior to planning.

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 1–16, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 M. Ahmadi and P. Stone

A common shortcoming of prior methods for learning probabilistic action
models is the assumption that the noise is normally distributed, which in many
cases is not true. To overcome that shortcoming, we propose an instance-based
approach for learning the action model. The action model is built empirically by
trying actions in the environment. Each sample effect is stored and is considered
individually for planning purposes.

The planning problem is modeled as a Markov Decision Process (MDP). The
transition function of the MDP is built with the help of the learned action
model. Using value iteration [4] with state aggregation, a plan which maximizes
the received reward is generated. When the environment is static, the value
iteration algorithm can be run offline. In dynamic environments, the planning
must be performed online. The online algorithm must be fast enough to be
within computational bounds of the robots. Though fast replanning algorithms
for robotic applications have been studied for classical planning problems (e.g.
see [5,6]), the probabilistic replanning algorithms that we know of (e.g. [7]), are
computationally expensive.

When using an instance-based approach, the observation of each dynamic
factor changes the modeled transition function of the MDP. But it only changes
the values of a small subset of state-action pairs. In the replanning algorithm,
using domain-dependent heuristics, the state-action pairs that are affected by
the dynamic factors are discovered, and only the values of those state-action
pairs are updated.

To evaluate our methods, we use a goal scoring task from the 4-legged RoboCup
competitions.Chernova andVeloso [8] learnmodels of kicks for the 4-legged robots,
however they do not discuss how they use this model. Their model consists of the
speed and direction of the ball in the first second. We extend their work by intro-
ducing an instance-based model instead of their parametric model, and show the
advantages of using such an instance-based model. Furthermore, we use the kick
model for action planning in the presence of opponent robots.

The two main contributions of this paper are:

– An approach to dynamic replanning of action sequences based on an instance-
based representation of action effects that is fully-implemented and tested on
a physical robot.

– An empirical comparison of an instance-based action model and the more
popular parametric action models on a physical robot.

The remainder of this paper is organized as follows. Related work is discussed
in Section 2. In Section 3 the RoboCup test-bed is presented. In the next three
sections, we consider the problem as an abstract MDP. In Section 4 the details of
the instance-based action model, and how to learn in it, are provided; Section 5
introduces the planning algorithm for static environments; and Section 6 extends
the planning problem to dynamic environments. The implementation details of
the RoboCup domain are presented in Section 7. In Section 8, experimental
results are provided, and Section 9 concludes.
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2 Related Work

In recent years there has been significant progress in building autonomous mobile
robots. For example Burgard et al. have developed an autonomous tour guide
robot [9]. Also, there have been many advances in robot soccer playing agents for
the RoboCup competitions. However the focus of the research in the RoboCup
4-legged community is mainly on the lower level components such as vision,
localization or locomotion. The action selection has generally been reactive or
the result of shallow look-ahead. The main reason is that the action effects are
highly uncertain and creating an accurate action model is challenging. In this
paper using the lower level components, we tackle the problem of building an
accurate action model and use that to incorpate a full-blown planning approach
based on an MDP representation.

Researchers have used planning methods for robotic applications. For example
Farritor and Dubowsky build a climbing robot which uses planning to find a
sequence of actions which achieves its goal [10]. In earlier work Frommherz and
Werling propose using heuristic search for planning and show experiments in a
simple assembly task [11]. Compared to the problem considered in this paper,
in the mentioned papers the action effects are not nearly as uncertain. Thus a
parametric action model performs sufficiently well. Also, the environment is not
dynamic, so there is no need for replanning.

Instance-based methods have been used for various fields such as health care,
assessment and design [12]. Also Planning tasks have been solved with instance-
based methods [12]. Atkeson [13] investigates the use of an instance-based method
(locally weighted regression) to learn task models for control. Gabel and Ried-
miller use an instance based method for value function approximation of a re-
inforcement learning problem in the soccer simulation domain [14]. Atkeson and
Santamaria compare model based (using instance-based method) and model-free
reinforcement learning in a simple robotic task (pendulum swing up) and conclude
that model based methods learn faster [15]. Note that in the mentioned robotic
applications the uncertainty of the action effects is low and also the environment
is static. We take the next step of evaluating instance-based action models in a
dynamic robotic environment with highly uncertain action effects.

3 Problem Description

As a test-bed domain for our research we use a subtask of the RoboCup four
legged league. In this work we consider single robot goal scoring possibly against
multiple opponents. We assume the opponents only block the ball, and do not
kick or grab it.

As baseline software, we use the UT Austin Villa code base [16], which pro-
vides robust color-based vision, fast locomotion, and reasonable localization
within a 3.6m × 5.4m area1 via a particle filtering approach. Even so, the robot
1 The field is as specified in the 2005 rules of the RoboCup Four-Legged Robot League:
http://www.tzi.de/4legged

http://www.tzi.de/4legged
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(a) (b)

Fig. 1. (a) Representation of fall-kick from left to right (b) Representation of head-

kick from left to right

is not, in general, perfectly localized, as a result of both noisy sensations and
noisy actions effects. The robot also has limited processing power, which limits
the algorithms that can be designed for it.

The baseline software provides different types of kicks. The two that are con-
sidered in this work are called fall-kick (see Figure 1(a)) and head-kick (see
Figure 1(b)). The effects of these kicks are probabilistic based on how accurately
they are executed and what exact part of the robot hits the ball.

4 Instance-Based Action Model

The first step of planning with any action is understanding its effects. We build
the action model empirically by trying actions in the domain. In most real robot
applications, actions have probabilistic effects. Thus the model must be able to
represent uncertainty in action effects.

Fig. 2. Representation of the model of fall-

kick. The position of the robot and kick direc-
tion is marked by an arrow. Each dot represents
a sample action effect.

Previous methods (e.g. [8])
use parametric models of actions.
Most popular methods for mod-
eling the noise assume a Gaus-
sian distribution of noise for each
of the parameters of the ac-
tion model. Instead we take an
instance-based approach, where
each action effect from experi-
ments is called a sample action ef-
fect, and is stored in the model.
We claim and show in the experiments, that our instance-based action model is
more effective than a parametric action model.

In addition to noisy action effects, robots are faced with noise from other
sources (e.g. uncertain localization). Previous methods of building action models
(e.g. [8]) try to minimize the effects of such other noises on the action model. If
the action model does not represent the noise from all sources, the effects of the
environment’s noise must be accounted for in some other way for action planning
(e.g. an expensive way of accounting for localization errors is by planning from
a group of possible positions). Instead, we aim at having noise from all sources
captured by the action model. In this way, if the action model is used with any
planning algorithm, all the sources of noise are also considered. This requires
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the samples to be collected in a situation similar to the one that the robot faces
in the real environment, not in some other controlled setting.

An example of an instance-based action model for the fall-kick in the
RoboCup domain is shown in Figure 2.

5 Planning

In this section, we show how the instance-based action model can be used for
action planning. We model the problem as a Markov decision process (MDP)
and use a value iteration method to solve it. In this section the environment is
assumed to be static. Dynamic environments are considered in Section 6.

The planning problem is modeled as an MDP (S, A, Pr(s
′ |s, a), R), where:

– S is a discrete set of states. If the state space is continuous, it should be
discretized. We show that discretizing the state space does not have much
of a detrimental effect in the RoboCup goal shooting test-bed.

– A is the set of possible actions.
– Pr(s

′ |s, a) is the true continuous state transition probability function. It
gives the probability of getting to state s

′
after taking action a in state s.

Because of noise in the environment and uncertainty of action effects, the
transition function is stochastic

– R(s, a) ∈ R is the reward function.

The goal of the robot is to find a policy π : S �→ A that maximizes the received
reward. The policy determines which action is chosen by the robot from each
state.

Pr(s
′ |s, a) is not known to the robot, however the robot can use the action model

to approximate it. The approximation of Pr(s
′ |s, a) is called P̃ r(s

′ |s, a). The ap-
proximation is based on the action model. For computing P̃ r(s

′ |s, a), where s is
a discrete state, a representative of s is used for computing P̃ r(s

′ |s, a) (center of
the cell in grid discretization); when s is a continuous state, the true state (TS)
is used to computed P̃ r(s

′ |TS, a). R(s, a) is also computed with the help of the
action model. The details of computing P̃ r(s

′ |s, a) and R(s, a) for the RoboCup
goal shooting test-bed are presented in Section 7.

For state s, the value V π(s) is defined as the expected sum of rewards from s
until the end of the episode, while following policy π. V ∗(s) is the optimal policy
if V ∗(s) ≥ V π(s) for all policies π and all s ∈ S. Qπ(s, a) is defined as the sum
of the rewards received from state s until the end of the episode, while following
policy π (see Equation 1), if the first action executed is a. Q∗(s, a) is the optimal
such policy. The advantage of using Qπ(s, a) over V π(s, a) is presented in the
next section, where only a subset of Q values needs to be updated.

We use following two equations to perform standard value iteration [17]:

Q(s, a) = R(s, a) +
∑
s′∈S

P̃ r(s
′ |s, a)V ∗

t−1(s
′
) (1)
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V (s, a) = max
a∈A

Q(s, a) (2)

When the system is in state s, a common practice for action selection is to
discretize the state space (e.g. using a grid instead of the exact position) and to
choose action a such that it maximizes Q(s, a). Discretization makes solving the
MDP tractable. But enforcing that each position in a discrete grid-cell (state)
takes the same action can lead to dramatic sub-optimality. In order to alleviate
this effect, we take the middle ground: for action selection, instead of the grid
state, the robot uses its true state estimate (e.g. true position) that maximizes
the following value:

R(TS, a) +
∑
s′∈S

P̃ r(s
′ |TS, a)V ∗(s

′
) (3)

where TS is the true state estimate of the robot. Note that TS is only used for
action selection, not for the learning process.

This way, the effects of discretizing the state are deferred to the next step, and
it results in a better policy. In [16], we empirically show that in the RoboCup
test-bed, discretizing the environment with the true state for action selection is
very close in performance to using the true state in planning.

Note that with discretized state (grid position) the policy can be directly de-
rived from the V -values. However with the true state, all possible actions must be
evaluated, requiring significant, but manageable (on the Aibo) computational re-
sources. In the experiments section the advantage of this action selection method
is showed empirically in simulation.

6 Replanning

In the previous section, the environment was assumed to be static, and the value
function could be computed offline. In this section, the possibility of the presence
of dynamic factors (e.g. the presence of opponent robots in the RoboCup test-
bed) is considered. Existence of dynamic factors changes the transition function of
the MDP, and the value function for the new MDP needs to be computed online.
Because of the robot’s limited processing power and need for real-time decision
making, performing full online value iteration for consideration of the dynamic
factors is not possible. In this section a fast replanning algorithm is presented,
which leverages the Q-values that are computed for the static environment.

If the dynamic factors are considered in computing P̃ r(s
′ |s, a) in Equation 4,

the value iteration and action selection algorithms described in Section 5 can
also be applied to the dynamic environment. However dynamic factors, by their
nature, are not known in advance.

Similar to Qπ(s, a), Qπ(s, a|F ) is defined as the sum of the received reward
in the presence of dynamic factors F , from state s until the end of the episode,
while following policy π (see Equation 3), if the first action to execute is a.
Q∗(s, a|F ) is the optimal such policy.
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In the systems that we are considering, the difference between Q∗(s, a) and
Q∗(s, a|F ) is only substantial for states where F has a direct effect on Q(s, a).
For the rest of the states, Q∗(s, a|F ) ≈ Q∗(s, a). This fact, which is typical
of many dynamic systems, where the dynamic factors have an effect on only a
subset of the Q-values, is the basis of the proposed replanning algorithm.

Assuming Q(s, a) is the current Q-function, the algorithm for updating the
Q-values in the event of observing dynamic factor f is as follows:

1. Flag the (s, a) pairs that are potentially affectedby f (using domain-dependent
heuristics).

2. For flagged pair (s, a), there is a good chance that Q(s, a|f) is very different
from Q(s, a). Thus, if (s, a) is flagged, Q(s, a|f) is initialized to zero, and
otherwise, it is initialized to Q(s, a).

3. Only for flagged pairs (s, a), the Q(s, a|f) are updated using Equation 1.
Notice that only one round of updates is performed. After all the Q-updates,
the V values are re-computed using Equation 2.

Action selection is the same as in the previous section. The two main benefits
of our replanning algorithm are that it is fast and the robot can distribute the
value iteration steps over several decision cycles, so the robot does not miss
action opportunities.

Recall that the robot does another level of inference on the effects of actions
in the action selection step, so the effects of adding f is effectively backed up
two steps.

7 Implementation Details

In this section the implementation details of the instance-based action model
(Section 4), planning (Section 5), and replanning (Section 6) algorithms for the
goal scoring test-bed (Section 3) are presented.

7.1 Learning a Kick Model

The main action for scoring goals is kicking (assuming the robot walks to the
new position of the ball after each kick action). Kicks (as shown in Figures 1(a)
and 1(b)) have uncertain (i.e. probabilistic) effects on the final position of the
ball, which is based on the exact point of contact between the robot and the ball.
In this section we present the implementation details of learning the instance-
based kick model.

Chernova and Veloso [8] use the average and standard deviation for the speed
and angle of each kick to model the kick. They measure the angle and distance
that the ball travels in one second after the kick. By just considering the kick in
the first second, and also setting the initial position of the ball by hand, they try
to minimize the noise in their kick model. They do not provide details of how
they use this model. But a popular way of using average and standard deviation
is modeling the parameters (angle and distance) with Gaussian distributions.



8 M. Ahmadi and P. Stone

In contrast, for creating our kick model, the robot approaches the ball, grabs
it, and kicks it to the center of the field. Right before kicking, it records its
position (kick position), which includes possible localization errors. Afterwards,
the robot follows the ball, and when the ball stops moving, a human observer
sends a signal to the robot and the robot evaluates the ball position and stores
it (final ball position) 2. The gathered sample kick effects (kick position, final
ball position) are processed by an offline program, and for each kick sample,
the difference between the final ball position and the kick position is computed.
These changes in x and y coordinates get discretized and are stored in a grid.

The learned action model is a three dimensional array KT , where for kick
type k, KT [k][x][y] represents the number of kicks that changed the position of
the ball for x grid cells in the x-axis and y grid cells in the y-axis. Figure 2 shows
KT[fall-kick] where the position of the robot (kick position) and kick direction
is shown with the arrow, and each black dot represents one sample action effect
resulting in the ball ending up in that grid cell. The main rectangular grid
represents the size of the legged soccer field.

Two fundamental differences between our model and Chernova and Veloso’s
[8] as well as other usual action models (e.g. [1,2]) are that ours is (1) instance-
based, and (2) unlike usual action models, where the designers make an effort
to reduce the noise (e.g. tracking for one second, and putting the ball in front of
the robot in [8]), we aim at designing an action model which captures the full
environmental noise.

7.2 Planning

Fig. 3. Soccer field which is divided
into a grid. A sample kick with the pos-
sible effects is also shown in presence of
an opponent robot.

We begin by dividing the robot’s environ-
ment into the disjoint grid G. Dotted lines
in Figure 3 show the actual grid used in
the experiments. KT is the set of different
kick types available to the robot, and D is
a discrete set of possible kick directions.

In Section 8, we empirically show that
discretizing the field does not have much
of a determental effect on the effectiveness
of the algorithm.

The MDP (S, A, Pr(s
′ |s, a), R) for the

test-bed problem is defined as:
S = G is a set of states, representing the grid cell that the ball is in. The

center of a cell is assumed as the position of the grid cell. In the rest of the
paper, the state is also used to point at the grid cell where the ball is located
in that state. A = KT × D is the set of possible actions, which is kicking with
a specific kick type (from KT ) at a direction (from D). Pr(s

′ |s, a) is the state
transition probabilities. R(s, a) is the reward function and is the probability of
scoring a goal (with just one kick) from state s using action a.
2 In principle it is possible for the robot to recognize when the ball has stopped moving,

but our robots do not have that capability.
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The kick model (KT ) is used to approximate P̃ r(s
′ |s, a). KT is projected to

the starting point of the kick with the kick direction to get a distribution over kick
effects (i.e. the possible cells that the ball can land in). This new distribution is
P̃ r(s

′ |s, a). More precisely P̃ r(s
′ |s, a) is computed using the following equation:

P̃ r(s
′ |s, a) =

KT [k][s
′

xd − sxd][s
′

yd − syd]
N [k]

(4)

where sxd (syd) is the x-index3 (y-index) of the grid cell containing the ball
in s, after the transformation that transforms the kick direction to the x-axis.
For example if the a is the kick action shown in Figure 3, and s

′
is the grid

cell shown on the field (Figure 3), then s
′

xd − sxd = 0, s
′

yd − syd = +1. Thus

P̃ r(s
′ |s, a) = KT [k][0][1]

N [k] = 2
118 For each state s, the center of the cell is used for

computing sxd and syd. k is the type of action a, and N [k] is the number of kick
samples of type k.

R(s, a) is also computed with the help of the action model, that is, R(s, a)
is equal to the percentage of the sample kick effects from the kick model that
result in a goal from state s by taking action a. A line is computed from the
robot position to the final kick effect’s position, if that lines intersects the goal
line, it is considered a goal.

The value iteration and action selection algorithms described in Section 5 are
used for computing Q-values and action selection. Note that for static systems
the value iterations are performed offline. Each round of value iteration on the
Aibo robot’s processor roughly takes 2 seconds, and each decision cycle is around
33 milliseconds. This shows why performing multiple rounds of value iteration
is not feasible for dynamic systems, and therefore there is a need for a fast
replanning method.

7.3 Replanning

Opponent robots in the goal scoring test-bed are considered as dynamic factors.
We assume that opponent robots only block the ball and do not grab or kick
it. The robot models the blocking as ball reflection from the opponent robots.
That is, if the kick trajectory of a kick sample in the kick model would hit any
of the opponent robots, the reflection from the opponent robot is assumed by
the robot as the final position of the ball. Sample kick effects of a fall-kick

(see Figure 1(a)) in presence of an opponent robot are shown in Figure 3. The
unfilled circles are the possible kick effects when the opponent does not exist.

The replanning algorithm presented in Section 6 is used to update the Q
values. In the first step of the algorithm, a pair (s, a) in the presence of the
opponent robot f is flagged for recomputation of its value if f is reachable by
an average kick a from s (i.e. instead of the kick model of a, it uses the average
distance and angle of kick a).4

3 x-index of the grid-cells in the ith row of the grid is i.
4 More elaborate techniques that consider all kick samples proved to need heavy com-

putation, which is not available on the robots.
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One special case to consider is when the opponent robot o intersects with a
grid cell g, and based on a sample action effect, the ball also ends up in grid cell
g. The value of a point in cell g is highly dependent on which side of opponent o
the point is located. If the final ball point is on the same side of o as the center
of cell g, V ∗(g) is used, and if not, average V values of the cells adjacent to g
and on the same side of o as the ball are used.

One round of full updates with the provided incremental planning roughly
takes 1 second, and we distribute that process over 25 decision cycles. Given the
fact that most of the 33 milliseconds of the decision cycle is already taken by the
vision processing, the robot on average loses every other cycle while perform-
ing the incremental update (effectively the decision cycle while performing the
update is closer to 66 milliseconds).

8 Experimental Results

The algorithms are evaluated both on a custom-built AIBO simulator [16] and
also on the real AIBO robots. The simulator, though abstract with respect to
locomotion, provides a reasonable representation of the AIBO’s visual and lo-
calization capabilities, and allows for a more thorough experimentation with
significant results. The kick model used in the simulator is the same as the one
used on the robot. Thus, the simulation results are based on the assumption
of a correct kick model. There are methods of active localization (e.g. [18]) to
reduce the localization errors, which are not considered here and can be used
orthogonally with this work. Thus, robots should deal with large localization
errors (in the simulation, this is reflected in the learned kick model), and that
results in lower scoring percentages.

Five different algorithms are compared in this section. The considered algo-
rithms include:

– AtGoal: In this algorithm, the robot always shoots directly at the goal
using fall-kick which is the more accurate kick. It is used as a baseline
algorithm.

– Plan: This is the planning algorithm (Section 5) for the clear field, where no
opponent robot is present. In clear fields, this is the algorithm of choice, but
it is also used to compare to RePlan in the presence of opponent robots.

– RePlan: This is the planning algorithm presented in Section 6, where the
robot observes the position of the opponent robots online.

– FullPlan: This algorithm is used for comparison with RePlan. In Full-

Plan, it is assumed that the position of the opponent robots is known as a
priori, and an offline algorithm performs the full value iteration, and passes
the Q-values to the robot.

– ParamPlan (ParamFullPlan): This is similar to the Plan (FullPlan

for the case of ParamFullPlan) algorithm, but instead of the full instance-
based kick model, a parametric kick model is used. Average and standard
deviation (similar to [8]) for distance and angle of each kick sample is com-
puted. Two different Gaussians are assumed, one for the angle, and the other
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for the distance of the kick samples. Each time the robot considers a kick,
it draws n random samples from each of the Gaussians, where n is equal
to the number of different kick samples that it would have considered for
the instance-based kick model. For each of the n pairs of (angle, distance),
it evaluates the kick. The final evaluation is based on the average of the n
evaluations. This experiment is used to show the power of the instance-based
kick model compared to the parametric kick model with normalized noise.

Comparing RePlan with AtGoal shows the general effectiveness of our
approach. The advantage of RePlan compared to Plan shows the benefit of
the replanning algorithm. Experiments also show that performance of RePlan

is close to FullPlan which highlights the effectiveness of the proposed fast
replanning algorithm. Comparing RePlan with ParamPlan demonstrates the
benefit of using instance-based action models.

The grid used in the experiments is 7 × 10 and is shown in Figure 3. The
number of rounds of value iteration is set at 20.

8.1 Simulation Results

In the first experiment, the environment is assumed to be static. In later exper-
iments, the algorithms are evaluated in dynamic environments. At the end of
this section, the effects of considering the true position for action selection (see
Section 5) are investigated. While doing so, we also argue that, the effects of
assuming a grid for representing the position are minor.

Each episode starts with the ball positioned in a starting point, and is finished
when a goal is scored or the ball goes out of bounds. Each trial consists of 100
episodes. The percentage of the episodes which resulted in goals and the average
number of kicks per episode are computed for each trial. The reported data is
averaged over 28 trials.

Clear Field Experiment. We start the experiments with no opponents
(Figure 4). Two starting points for the ball are considered: center point
(Figure 4(a)) and the upper-left point (Figure 4(b)).

Recall that the AtGoal algorithm only uses fall-kick. For a fair compari-
son between AtGoal and Plan, the result for the Plan(fall-kick) algorithm,
which is similar to Plan, but only uses fall-kick, is also presented. As the re-
sults in Table 1 suggest, using the head-kick does not make much of a difference
for the Plan algorithm. For that reason, in the next experiments Plan(fall-

kick) is no longer considered. However, one of the benefits of the algorithms
presented in this paper is that they enable the addition of newly designed kicks.
All that is needed is their instance-based models.

The scoring percentage and average number of kicks per episode for AtGoal,
Plan and ParamPlan are presented in Table 1. As shown in the table, when
the starting ball point is at the center of the field, planning significantly increases
performance over the AtGoal algorithm by 30%, and increases the performance
by 76% when the starting ball position is the upper-left point. For the planning
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algorithm, the average number of kicks is also higher, which is a compromise for
achieving a better scoring percentage.

The effectiveness of the instance-based kick model is shown by the significant
advantage of the Plan algorithm compared to ParamPlan in Table 1. Using the
instance-based kick model for the center and upper-left starting points increases
the performance by 43% and 42% compared to ParamPlan, respectively.

(a) (b) (c) (d)

Fig. 4. Clear field. (a) The center of the field is the starting point of the ball. (b) The
upper-left point is the starting point for the ball. (c) The field with one stationary
opponent robot. Sample sequences for RePlan and Plan are shown for the � starting
point. (d) The field with two stationary opponent robots.

Table 1. Comparing different algorithms for the two starting ball points in the clear
field experiment (see Figure 4)

Starting Point: Center (Fig. 4(a))

Algorithm AtGoal Plan Plan(fall-kck) ParamPlan

Scoring% 46.2 ± 4.8 60.5 ± 4.8 58.7 ± 5.0 42.1 ± 5.7

Kicks/episode 3.4 ± 0.1 9.7 ± 0.9 9.6 ± 0.9 10.1 ± 0.8

Starting Point: Upper-Left (Fig. 4(b))

Algorithm AtGoal Plan Plan(fall-kck) ParamPlan

Scoring% 29.1 ± 5.0 51.3 ± 5.4 53.1 ± 5.3 39.0 ± 5.2

Kicks/episode 1.7 ± 0.1 6.3 ± 0.6 6.1 ± 0.8 7.1 ± 0.7

One Opponent Experiment. In this experiment, a stationary opponent robot
is placed in the field. The field with the opponent robot is shown in Figure 4(c).
The ball’s starting point is at the center of the field. The algorithms AtGoal,
RePlan, FullPlan, Plan, and ParamFullPlan are compared. Success per-
centage and average number of kicks is presented for the above-mentioned algo-
rithms in Table 2.

The RePlan algorithm significantly improves scoring percentage compared
to AtGoal, Plan and ParamFullPlan by 104%, 13%, and 45% respectively.
RePlan is also very close in performance to FullPlan (non-significant differ-
ence of 1.5%), where the transition function is assumed to be known a priori
and the Q-values are computed offline without computational limitations. The
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Table 2. Scoring percentage and average number of kicks for different algorithms, in
the one opponent robot scenario (see Figure 4(c))

Algorithm AtGoal RePlan FullPlan Plan ParamFullPlan

Scoring % 32.00 ± 5.83 65.92 ± 4.20 67.10 ± 3.92 57.42 ± 3.76 45.17 ± 4.59

# Kicks/episode 1.77 ± 0.11 11.74 ± 1.00 8.22 ± 0.67 8.42 ± 0.63 9.59 ± 0.69

average number of kicks per episode is the most for the RePlan algorithm (see
Figure 4(c) for a sample kick sequence for RePlan), but in this domain, scoring
efficiency is of greater importance.

Two Opponents Experiment. In this experiment, an additional robot is
positioned on the field. The field is shown in Figure 4(d). The scoring rate and
average number of kicks for different algorithms is presented in Table 3. The
trend in the result is consistent with the observation in the one opponent robot
scenario in the previous experiment (Section 8.1).

Table 3. Comparing different algorithms for playing against the two opponents case
(Fig. 4(a))

Algorithm AtGoal RePlan FullPlan Plan ParamFullPlan

Scoring % 21.85 ± 4.64 54.25 ± 5.58 54.64 ± 5.59 46.46 ± 5.10 38.07 ± 4.39

# Kicks/episode 5.09 ± 0.32 19.45 ± 1.97 11.43 ± 0.90 13.04 ± 1.14 11.84 ± 0.96

Moving Opponents Experiment. In this experiment two moving opponent
robots are present on the field. In each episode, the opponent robots start from
the position of the opponent robots in the previous experiment (Figure 4(d)), and
after each kick, they move 150cm5 randomly in one of the four main directions
(i.e. left, right, up or down). In an effort to reduce the noise in the result, the
seed of the pseudo-random generator, which determines what direction opponent
robots move is fixed for all trials (not episodes).

The scoring percentage and average number of kicks for AtGoal, RePlan,
and Plan algorithms is provided in Table 4. The performance of RePlan is
178% better than AtGoal and 6% better than the Plan algorithm. Since the
robot movement is random, the position of the opponent robots can not be
known as a priori, and no offline algorithm like FullPlan can be developed.

8.2 Real Robots

In this section, experiments on a real robot are reported. Robot experiments are
time consuming and it is not possible to do as many trials as in simulation. First,
experiments in the clear field case (Figure 4(b)) and then against two opponent
robots (Figure 4(d)) are described.

5 Recall that the size of the field is 5400cm × 3600cm.
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Table 4. Comparing AtGoal, Plan and RePlan algorithms in the presence of two
moving opponent robots

Algorithm AtGoal RePlan Plan

Scoring % 20.60 ± 5.14 57.32 ± 4.82 54.14 ± 3.98

# Kicks/episode 4.52 ± 0.37 9.51 ± 0.65 9.51 ± 0.67

Real Robot on a Clear Field. The configuration is the same as the one
shown in Figure 4(b). Each trial consists of 50 episodes, and the result for one
trial is reported in Table 5. The trend is similar to the simulation experiment
of the same configuration, and Plan increases performance over AtGoal and
ParamPlan by 80% and 20% respectively.

Table 5. Comparing different algorithms for upper-left starting ball points for the
clear field experiment (see Figure 4(b)) with a real robot

Algorithm AtGoal Plan ParamPlan

Scoring % 20 36 30

Real Robot Against Two Opponent Robots. In this experiment the con-
figuration of the field in Figure 4(d) is used for a real robot. Each trial consists
of 25 episodes, and the results are reported in Table 6.6 The results show the
same trend as the simulation on this field: RePlan is better than Plan and
AtGoal.

Table 6. Comparing different algorithms for real robot in the experiment against two
opponent robots (see Figure 4(d))

Algorithm AtGoal Plan RePlan

Scoring % 4 16 24

9 Conclusion

This paper considers the action planning problem in noisy environments, model-
ing it as an MDP. An instance-based action model is introduced to model noisy
action effects. The action model is then used to build the transition function
of a MDP. Furthermore a fast algorithm for action planning in dynamic envi-
ronments, where dynamic factors have effect on only a subset of state-action
pairs is introduced. To evaluate these approaches, goal scoring in the RoboCup
4-legged league is used as a test-bed. The experiments show the advantage of
6 Since in base code used, the robots do not walk around opponent robots, in this

experiment whenever the robot attempts to walk through the opponent, the human
temporarily removes the opponent robot. Were the robot equipped with obstacle
avoidance, it would score in roughly the same trials — it would just take a bit
longer.
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using an instance-based approach compared to parametric action models. They
also show that the fast replanning algorithm outperforms off-line planning and
approaches the best possible performance assuming the full transition model is
known a priori.

In future work, the performance of the incremental replanning algorithm may
be improved by learning the effects of dynamic factors on the transition model.
Also, extending this approach to team behaviors, where the value of each state
also depends on the positions of teammates, is an interesting direction for future
consideration.
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Abstract. In the RoboCup competition, robot soccer game, ball and
robots are extracted by using color information. If color markers attached
on the robot or a ball itself are occluded, especially the occlusion ratio is
high, it will be difficult to extract them. This paper proposes a new and
high precision method which extracts partially occluded objects based
on the statistical features of the pixel and its neighborhoods. Concretely,
at first, input image is labeled by using color information and small
candidate regions which have similar color to the color markers or the
ball are extracted, then each candidate region is classified into partially
occluded object or noise by using HLAC features and SVM. We applied
our method to the global vision system of RoboCup small size league
(SSL) and confirmed that it could extract partially occluded objects,
94.23% for 5 to 8 pixels area and 80.06% for 3 to 4 pixels area, and
worked more than 60fps.

1 Introduction

RoboCup, robot soccer game, is an international research project to clarify and
promote robot engineering and artificial intelligence by using autonomous robots
and started on 1997. The final objective is “By the year 2050, develop a team of
fully autonomous humanoid robots that can win against the human world soccer
champion team.”

To extract robots and a ball, the images of the CCD cameras that are mounted
at the ceiling of the hall or on the robot itself are used in general. The former is
called “global vision” and the latter is called “local vision”, respectively. Figure 1
shows examples of the soccer scene in RoboCup competition. Figure 1(a) shows
SSL’s robots which utilize a global vision system, and Fig.1(b) shows 4-legged
league’s robot which utilizes a local vision system.

In the real game, many teams use color markers to extract and classify each
robot and ball. There is no restriction, except for the team color marker, to
the color and the shape of the color markers, so each team can uses different
color/shape markers[1].

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 17–28, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Figure 2 shows an example image obtained through a CCD camera. Figure 2(a)
is an original image and Fig.2(b) is its labeled result. In the small size league, it
needs less than 1/60 seconds to process 1 cycle. When all of the color markers are
observed completely, the robots and ball can be detected, but if the objects are
partially occluded, then it will be difficult to extract. This kind of occlusion occurs
in the global vision system and also in the local vision system. Most of the conven-
tional methods which calculate width, height, area, etc. of the candidate objects
or regions have not been succeeded in extracting partially occluded objects and
in judging noise or target object. As described above, it is necessary for the cam-
era to observe whole of the object without occlusion. Narita et al. have reported
that multi-cameras could reduce the occlusion of the ball for RoboCup SSL[2].
However, even though the number of cameras increases, the occlusion would not
be 0.

In general, particle filter or Kalman filter etc. are used for the object tracking
with occlusion. Sugimura et al. have reported the robust tracking method for
the object detection[3]. However, an essential problem remains that the moment
when the object just begins to be seen could not be caught by the conventional
tracking methods.

This paper proposes a new and high precision method to extract partially
occluded objects. The candidate regions that are extracted and labeled by color
information are classified into the target object or noise by using higher order
local autocorrelation (HLAC) features and support vector machines (SVM). In
the following parts, the analysis of extraction errors from the view point of
extraction and occlusion are described in section 2, a high speed and robust
method is explained in section 3, and the experimental results for the RoboCup
vision system are expressed in sections 4 and 5.

(a) Small-size robot (b) 4-legged robot

Fig. 1. Soccer scenes in RoboCup
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(a) Original image (b) Labeled result

Fig. 2. An image obtained through a global vision

2 Problems of Conventional Methods

2.1 Extraction Error by Noise

Noise appears due to the aberration of camera’s lens or the threshold setting of
the parameters such as the width, height, area, and so on, but when the noise
has the same values as the target pixel, it will be difficult to remove it.

Usually, since the target is not so small, in general it is larger than the noise,
conventional method succeeds in thresholding. If the extracted area becomes
small by the occlusion, then the extraction rate goes down.

Fig. 3. Occluded area in SSL (Occlusion area is displayed with diagonal lines)

2.2 Extraction Error by Partial Occlusion

Many teams in SSL including our team use a global vision system composed of
2 or more cameras. Occlusion occurs a little in the center of the image, and on
the contrary, it becomes more in the area far from the center of the image as
shown in Fig.3.

Figure 4 shows a typical situation which causes occlusion. In the RoboCup
SSL competition, a golf ball colored in orange is used. Figure 5 shows exam-
ples of labeled result for orange regions. Figure 5(a) is a case that only a ball
exists and Fig.5(b) is a case that some part of a ball is occluded by a robot.
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Figures 5(c) and 5(d) are the cases that some pixels around color marker or a
line on the field are detected as pseudo orange region. In the RoboCup compe-
tition, it is necessary to classify these similar regions in real time whether it is a
real target object or a noise.

Fig. 4. A typical scene of occlusion

Original image Labeled image Original image Labeled image

(a) Ball only (b) Partially occluded ball

Original image Labeled image Original image Labeled image

(c) Noise on the robot (d) Noise around the line

Fig. 5. Examples of orange objects

3 A Method to Extract Partially Occluded Object by
HLAC and SVM

3.1 Principle of the Proposed Method

This section describes a method to extract partially occluded object by us-
ing higher order local autocorrelations (HLAC)[4] and support vector machines
(SVM). Figure 6 shows the concept of the proposed method. First, the system
calculates HLAC features by using 35 masks shown in Fig.7 for each pixel which
belong to class 1 (i.e. ball) and class2 (i.e. noise), respectively. The number of
dimension of HLAC features is 353 = 105 because each pixel’s value is composed
of Y, U and V values. Then, the distributions of HLAC features for class1 and
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Fig. 6. The flow of the proposed method

class2 are applied to SVM. The combination of HLAC and SVM realizes a robust
extraction to the changes of direction (occlusion occurs in any directions) and
also to the changes of lighting.

3.2 Calculation of HLAC Features and Normalization

How to expand autocorrelation function to higher orders is presented, for ex-
ample, in [3]. Let the reference value be r on the image f , then the N -th order
autocorrelation c(a1, · · ·aN ) is defined by the calculation as

c(a1, · · ·aN ) =
∫

f(r)f(r + a1) · · · f(r + aN )dr, (1)

here a1, a2, ...aN are the reference values around r.
Now, restrict the order N up to 2(N = 0, 1, 2) and its displacement is the

correlation around the f(r) at a maximum 3 in the 3×3pixels. Then the number
of feature values becomes 35 as shown in Fig.7.

Fig. 7. Templates of higher order local autocorrelation feature that N is limited to 2
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As for the feature vector calculated by the sum of products of pixel value, it is
necessary to normalize so that the value of each feature vector be the same range.
In case of 8-bit quantization for each pixel value, the normalized autocorrelation
c′(a1, · · ·aN ) becomes as follows.

c′(a1, · · ·aN ) =
∑

r

f(r)f(r + a1) · · · f(r + aN )
255N

(2)

In addition, feature vectors are separately calculated for each element of the
YUV color information, so the feature vector H is expressed as

H = {c′Y (a1, · · ·aN ), c′U (a1, · · · aN ), c′V (a1, · · ·aN )} (3)

An example of H is shown in Fig.8. As shown in Fig.8(a), the feature values
corresponding to N = 0, 1(0 to 2 for x-axes) are extremely smaller than others.
In contrast, Fig.8(b) shows the normalized values.

(a) Before normalization (b) After normalization

Fig. 8. An example of HLAC features

3.3 Training by SVM

It is reported that SVM is effective to the changes of the position and the lumi-
nance in the object extraction[5,6]. Feature vectors, Hball for the object to be
detected as the target object and Hnoise for the noise, are used for the training
data of SVM. These data are collected as the training data in the beginning and
creates a model for SVM1.

4 Application to RoboCup SSL

4.1 Time Restriction in RoboCup

The flow of the ball detection is shown in Fig.9.
First, labeling and segmentation2 processes are applied to the color space. The

proposed method uses the parameters such as width, height and area features
like a conventional method.
1 C-SVC is used for the classifier and RBF kernel is used in LibSVM[7].
2 Segmentation process by using CMVision2[9].
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Original image

Index image

Labeling (by using Look-up Table)

Extraction  of  orange regions

Regions of orange objects

Reduction of noises
by shape features (width,height,area)

Candidate regions

The ball

Classification by HLAC features and SVM

Fig. 9. Ball detection flow

In general, the processing interval is 60fps or more. And the total processing
time for each frame is 16.7msec or less. In our conventional method, it took
1.9msec for image processing and 2.1 to 6.1msec for other processing such as
strategy, pass generation, and so on. Therefore, our proposed method can use
about 16.7 − 6.1 = 10.6msec or less[8].

4.2 Host Computer System

The specification of our computer is as follows:

– CPU Athron 64 3500+
– 512MB Memory
– Debian Linux Operating system
– GV-VCP/PCI capture boards

(Bt848 chipset is popular and low-cost board.)

4.3 Characteristics of Robots and Ball in Occlusion

We have used the black color for the robot’s body except for the color marker as
shown in Fig.10. The height of the robot is 150mm and the ball is 42mm. When the
ball is occluded, the color of the neighborhood region of the ball becomes black.

5 Experiment

5.1 Construction of Training Model and Classification

We have prepared training data with occlusion which occurred around periphery
of the image, and at the same time, under the condition that the lighting changes in
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Fig. 10. A robot and a ball that are used for occlusion experiment

order to rise up the robustness of the proposed method. The occlusion images are
obtained by controlling a robot to occlude some part of the ball as shown in Fig.10.

We collected the features of a ball and noise from orange region of size 8
3 pixel, because the size of the ball was observed more than 83 pixel without
occlusion under our experimental conditions. The collected training data are
shown in Table 1. The distributions of the training data are shown in Fig.11.
Figures 11(a), 11(b) and 11(c) are the distributions of the width, height and area
of the ball, respectively, and Fig.s11(d), 11(e) and 11(f) are those of the noise.

Table 1. The number of training data of ball and noise from orange region

Picked up region The number of The number of
Width×Height [pixel] Area [pixel] training data for balls training data for noise

8x3 or less 1 300 2000
8x3 or less 2 1500 2000
8x3 or less 3,4 1800 2000
8x3 or less 5-8 2000 2000
8x3 or less 9-16 2000 0
8x3 or less 17-24 2000 0

The classifier based on SVM was created by these training data. We evaluated
the classifier by using the 10-fold cross validation. From Fig.11, all of noise ob-
served became 8 pixel or less, then the experiment and classification for partially
occluded balls were done for under 8 pixels.

The training data was evaluated by using the following expressions.

precision =
R

N
(4)

recall =
R

C
(5)

F − measure =
2 · precision · recall

precision + recall
(6)

here, R is the the number of orange regions of the detected balls (noise is not in-
cluded), N is the the number of orange regions of the detected balls (noise is in-
cluded), and C is the the number of orange regions of the balls in training data set.
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(a) Ball width (b) Ball height (c) Ball area

(d) Noise width (e) Noise height (f) Noise area

Fig. 11. Distributions of shape features of training data

The ball has been detected only by using width, height and area of the region in
a conventional method. Therefore, not only the ball but also the noise is included
in the region when the size becomes smaller. The detection rate D of the ball in a
conventional method is calculated as D = B

B+N for each area of the region, here,
B and N are the numbers of balls and noise observed in the unit time.

The robot shown in Fig.10 has moved at random by using a remote controller,
and the numbers of observations of the ball and noise were examined. Table 2
shows this result. The detection rate of a conventional method was calculated
by using it. The number of frames in which the orange regions were observed
was assumed to be 6000 frames.

5.2 Calculation of Detection Rate in a Practical System

In our practical system, in the unit time for ball detection rate D(n) is calculated
from the product of the classification rate BallClassificationRate(n) and the
number B(n) of the ball observed by a certain number n of pixels.

D(n) =
∑24

i=n

(
B(i) · BallClassificationRate(i)

)∑24
i=n B(i)

(7)

Table 2. The numbers of orange regions for ball and noise observed in 6000 frames

Picked up region The numbers of orange regions

Width×Height [pixel] Area [pixel] ball noise

8x3 or less 1 62 8879
8x3 or less 2 173 8114
8x3 or less 3,4 304 5388
8x3 or less 5-8 490 7109
8x3 or less 9-16 1518 0
8x3 or less 17-24 2086 0
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From the data in Table 2 and classification result, ball’s detection rate D(i)
(i = 1, 2, 3, 5, 9) was calculated and the processing time was measured.

6 Experimental Result

6.1 Classification Result by Each Area

Table 3 expresses the experimental result for the object classification of a con-
ventional method and our proposed method for each area.

6.2 Detection Result in a Practical System

Table 4 shows the detection rate and the processing time in our practical system.
The detection rate was calculated based on ball’s samples in continuous observed
data(6000 frames).

Although our proposed method can be applied to both of the ball detection
process and the marker detection process, in the experiment, we applied only
to the ball detection. The processing time shown in Table 4 denotes all of the
vision processing.

7 Discussions

Table 3 shows the performance of the classification in each area. The proposed
method is higher than a conventional method, and especially for the case that
the size of the object is small. Furthermore, it is robust for the changes of lighting
intensity, concretely it could work even if it changes in 1.1ev(+214%).

Table 4 shows the real detection rate in our particle system. RoboCup system
requires more than 97 or 98% extraction rate. Although a conventional method
has the limit that the target size should be more than 2 pixels area, and our
proposed method has enough potential for all cases.

For the object of size 3 pixels area or more, it is known from Table 4 that
the processing time is less than 10.6msec as discussed in 4.1, and it satisfies our
system’s condition to work in real time.

Table 3. Classification result for each area

Picked up region Classification result

Width × Height [pixel] Area [pixel] precision recall F -measure

8x3 or less 1 59.00% 45.12% 51.13%
8x3 or less 2 71.80% 73.88% 73.88%
8x3 or less 3,4 73.83% 87.43% 80.06%
8x3 or less 5-8 93.05% 95.45% 94.23%
8x3 or less 9 or more 100.00% 100.00% 100.00%
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Table 4. Detection result and processing time in our practical system

Picked up region Conventional method Proposed method

Width × Height Minimum area Detection Processing Detection Processing
[pixel] [pixel] rate time[ms] rate time[ms]

8x3 or less 1 78.94% 1.84 96.49% 120.31
8x3 or less 2 88.00% 1.83 97.09% 14.50
8x3 or less 3 83.03% 1.71 97.98% 9.86
8x3 or less 5 88.00% 1.69 99.31% 9.56
8x3 or less 9 100.00% 1.65 100.00% 8.53

8 Conclusions

This paper described a high speed method to extract partially occluded object
by using HLAC and SVM. And it is shown that this method is robust for the
changes of luminance. From experimental result, it has clarified to have the
effectiveness for the extraction of partially occluded objects and also confirmed
that it works in real time. We applied our proposed method to the RoboCup’s
global vision system and confirmed that it could extract color markers on the
robots and a ball in the occluded situations.

Although this method works in real time, there still remains some subjects
to be solved. It is required to realize more high speed processing in order to use
the rest time for the strategic motion planning, and also it is also necessary to
select more effective features to shorten the training process. These are coming
subjects.
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Abstract. Decision making is an important issue in robot soccer, which has not 
been investigated deeply enough by the RoboCup research community. This 
paper proposes a probabilistic approach to decision making. The proposed 
methodology is based on the maximization of a game situation score function, 
which generalizes the concept of accomplishing different game objectives as: 
passing, scoring a goal, clearing the ball, etc. The methodology includes a 
quantitative method for evaluating the game situation score. Experimental results 
in a high-level strategy simulator, which runs our four-legged code in simulated 
AIBOs’ robots, show a noticeable improvement in the scoring effectiveness 
achieved by a team that uses the proposed approach for making decisions.  

1   Introduction 

The aim of this paper is to propose a general methodology for taking decisions 
probabilistically in robot soccer. In a robotic soccer match, a player needs to take 
several decisions as for example: (i) where to position itself in the field when not 
having the ball, (ii) when to approach the ball, (iii) when to act as a support player, 
either supporting an attacker or a defender, (iv) what movements to do with the ball 
when having it, and (v) when and (vi) to which position to kick the ball. The decisions 
must take into account the role of the robot (defender, attacker, etc), the state of the 
game (score), the robot surround (position of teammates, opponents and the ball), and 
the teammates actions. In addition, decisions should be taken as fast as possible. 

Most of the existent work related with decision making in robot soccer has focused 
in resolving specific tasks such as pass selection, and has not taken enough care of the 
big picture. The few approaches that consider several tasks at the same time, start 
their reasoning by considering a lot of reasonable decision criterions, and finally 
trying to mix them as best as possible. On the contrary, we believe that any strategy 
must start by defining a clear and general objective to be accomplished. Then, this 
general objective may be decomposed in more specific ones. In soccer, the general 
objective is to win the match, which can be also said as: “to score more goals than the 
opponent”. Thus, instead of making a detailed list of possible risks, gains and costs, 
and then trying to take them all into account in the best way, we are proposing to 
reason in the opposite way: to clearly define the general objective to achieve, and then 
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to find the more relevant criterions that can lead us to right decisions in order to 
accomplish this objective. 

When the problem is faced in this fashion, it is clear how to balance the specific 
objectives as passing the ball, shooting to the goal, etc., and a wide spectrum of 
decisions’ classes can be performed. Probabilities are nice to define such an approach, 
because in a probabilistic framework the natural uncertainties found in the process 
can be easily considered. The here-proposed methodology considers a score function 
of a given game situation. Decisions are taken in order to maximize the expected 
value of this score function. To make the kick decisions probabilistically, Montecarlo-
based algorithms are used to integrate the PDFs (Probability Density Functions) of the 
available kicks over the field space. Another particularity of the proposed system is 
the way it takes opponents into account: they are not merely seen as possible blockers 
of the intended actions. Instead, we consider that the opposite team is intending, as 
much as the own, to score goals. Thus, we evaluate their possibilities with the same 
deepness that we do with the own: all of our analysis is symmetric for both teams. As 
a result, the presented approach is able to naturally balance defensive and offensive 
behaviors, and furthermore, it is able to change this balance according to the present 
situation. As human players do, robots following our approach will be more averse to 
risk when facing a defensive situation, and will gradually become more prone to take 
risks as the situation gets more offensive. Finally, the proposed methodology provides 
a quantitative method for evaluating the game situation score. 

The advantages of the proposed system are the following: (i) the method relays only on 
the expected scored goal difference, and not in others conventionally taken into account 
such as pass success or ball possession time length; (ii) as stated in [8], when the space of 
the possible decisions is explored with a grid, it is possible to balance the accuracy of the 
decision and the computational cost; (iii) the uncertainty in the kicks result is considered; 
and (iv) the symmetric analysis of the situations allows a natural balancing between 
offensive and defensive behaviors. One disadvantage of the proposed method is the 
assumption of arbitrary models for the calculation of several of the probabilities. However, 
we believe this disadvantage may be corrected, by redefining if necessary the model of 
these probabilities, without affecting the core of the proposed system. 

This paper is organized as follows. In section 2 is presented some related work. 
The proposed probabilistic methodology for decision making is described in section 
3. In section 4, experimental results are presented. Finally, in section 5 conclusions of 
this work are given. 

2   Related Work 

For simulated soccer there have been proposed several interesting approaches that take 
into account several factors to make decisions ([4][7][8] to name a few). Some of them 
are based in reward functions, but finally, they use heuristics to mix probabilities (for 
example it is not clear how to compare the reward of a successful pass with the one of a 
successful shoot to the goal). Besides, they do not consider the uncertainty in the kicks’ 
result. 



 Probabilistic Decision Making in Robot Soccer 31 

 

When choosing an appropriate kick for an objective, most of the teams consider the 
time that it takes to be realized, the ball departure angle, and the shoot power, which 
is reflected on the ball speed after the kick (see for example the Team Description 
Papers in [2]). This information is usually acquired using statistics of data obtained 
from the repetition of a particular kick, and calculating the mean values of the 
distance and the angle of the final ball position for each available punch. There are 
different ways to choose the kick as a function of these parameters. From the strategic 
point of view there are differences at the moment of choosing a kick. For instance, the 
method implemented by the German Team [5] to pass the ball does not only use the 
information provided by its team partners; it uses in addition some visual information 
about the position of the receiver. Then it chooses the pass so that the objective is 
exactly the position of the receiving robot, which has to be warned right on that 
moment to react, and go back to the initial position for a better control of the ball. 

In [1], it is proposed an interesting approach to deal with kicks uncertainty, based on 
a MonteCarlo sampling. The probabilities of accomplishing some prioritized objectives 
(passing, self-passing, shooting, and clearing) were estimated for each kick. We have 
incorporated the idea of the MonteCarlo sampling to our work, but instead of using a 
prioritized list of objectives for the objective and kick selection, we are proposing the 
use of a generalized objective which takes into account simultaneously all the listed 
objectives considered in [1], plus other possible objectives which are very difficult to 
consider in such an approach, as for example leading passing (passing not directly to the 
teammate but to a point ahead). 

3   Proposed Approach 

3.1   Game Segment 

A RoboCup soccer match may be split into game segments. A game segment is the 
interval between two kick offs (kick offs occur when the match starts, and after a goal 
is scored). Every game segment may end in two ways: time out or goal. We can then 
define the score obtained in the current game segment as: 

 

1

0

1

g

t

g

ω
β ω

ω

′⎧−
⎪

= ⎨
⎪
⎩

 (1) 

Where gω ′  , tω  and gω  are respectively the events: “the opposite team scores”, 
“time is out before anyone scores” and “the own team scores”. 

3.2   Ball Control Action 

A ball control action (BCA) is what a robot does after catching the ball, and it consists 

in a relative displacement ( ),
T

x yΔ = Δ Δx  and rotation θΔ  of the robot holding the 

ball, and a kick k of the ball: 
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( ),
T

a = d k ; ( ),
Tθ= Δ Δd x  (2) 

Each game segment may be seen as a succession of BCA’s { }ka . We have a 

limited set of kicks { }l=Ω k . Let ( ),l lr θ  be the polar coordinates, relative to the 

kicking robot, to what the ball will arrive, if it is allowed to roll freely, after the kick 

lk  is performed. We assume that lr  and lθ  are independent Gaussian random 

variables with respective means ,r lμ  and ,lθμ , and variances 2
,r lσ  and 2

,lθσ . Then, the 

kick  lk  can be parameterized using: ( )2 2
, , , ,, , ,l r l l r l lθ θμ μ σ σ=Π . The parameters lΠ  

have to be calculated previously for each of the available kicks. Figure 1.a shows our 
current available set of kicks and their parameters.  

3.3   Score Function 

Let us define a game situation as a vector ( ),
T=S R b  where b is the estimated 

position of the ball and ( )1 1,..., , ,...,
R R

T

N N′ ′=R x x x x  is a vector containing the 

estimated poses of all robots, being RN  the number of robots per team. In particular, 

each robot may have an estimation of S . In our implementation, teammate robots 
share their own estimated positions, the observations of the ball and of the other 
robots, and each robot tracks all the mobile objects using an EKF based approach. We 
propose that any situation of the game may be evaluated in terms of how 
advantageous it is. We will call this measurement the Game Situation Score (GSS). 
The GSS is defined as: 

( ) ( ) ( ) ( )g gGSS E P Pβ ω ω ′= = −S S S S  (3) 

We are especially interested in situations when the ball just arrived to a new 

position, after a BCA. We define ( ),
T

k k k=S R b  as the situation produced by ka , in 

the moment when the ball stops rolling. The event “a goal is scored by means of ka ” 

is defined as g
kω  or g

kω ′ , depending on which team scored. The events g
kω +  and g

kω ′
+  

correspond to a goal scored, by means of a later BCA than ka , by respectively the 

own team and the opposite team. Then ( )g
kP ω S  is calculated as (the calculation of 

( )gP ω ′ S  is symmetrical): 

( ) ( ) ( )( ) ( )1g g g g
k k k k k k kP P P Pω ω ω ω += + −S S S S  (4) 

It is straightforward from the previous definitions that the immediate goal 

probability ( )g
k kP ω S  is 1 or 0 depending on whether kb  is inside or outside the 

opposite goal. 
The future scoring probability of the own team may be calculated in a recursive 

form: 
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( ) ( ) ( )1 1 1
g g
k k k k k k kP P P dω ω+ + + + += ∫S S S S S  (5) 

It is impractical to calculate the former integral, so we make some simplifications: 
(i) after the ball arrives to kb , the closest robot of each team, will lead to kb  until one 

of them catches the ball, (ii) as the pose of the rest of the robots at k+1 is 
unpredictable, we will assume they will remain static, and (iii) 1ka + , and thus 1k +b , 

are totally determined by the team of the robot which will perform 1ka +  and by all the 

robots’ poses. Therefore, 1k +S  is only a function of which robot will capture the ball 

and consequently perform 1ka + . Two events are defined: “the closest robot of the own 

team will catch the ball”, called 1
c
kω + , and “the closest robot of the opposite team will 

catch the ball”, called 1
c
kω ′

+ . Then, equation (5) can be rewritten as: 

( ) ( ) ( ) ( ) ( )1 1 1 1, ,g g c c g c c
k k k k k k k k k k k kP P P P Pω ω ω ω ω ω ω′ ′

+ + + + + + +≈ +S S S S S  (6) 

The catching probabilities ( )( )'
1

c c
k kP ω + S  are approximated as (analogous for 1

c
kω ′

+ ): 

( ) ( )
( ) ( )1

c kc
k k

c k c k

t
P

t t
ω +

′
=

′ +
S

S
S S

 (7) 

Where ( )c kt S  and ( )c kt′ S  are the amounts of time required to arrive to kb  for the 

closest robot of respectively the own team and the opposite team: 

( ) ( ), ,, i k k i ki k k

c k
R R

t
v

θ
ω

− −−
= +

b xx b
S

(
 (8) 

Where ,i kx  and ,i kθ  are respectively the position and orientation of the robot of the 

own team closest to the ball at time k. Note that the time required for displacing and 
for rotating are considered in terms of the estimated robot linear speed Rv  

(=40cm/sec) and angular speed Rω  (=120°/sec) (these values correspond to AIBO 

ERS7 robots). The calculation of ( )c kt′ S  is analogous. 

The future scoring probabilities ( )( )1 ,c cg
k k kP ω ω ′

+ + S  can be calculated using (4): 

( )( ) ( )( ) ( )( )( ) ( )( )1 1 1 1 1 1 1, , 1 , ,c c c c c c c cg g g g
k k k k k k k k k k k kP P P Pω ω ω ω ω ω ω ω′ ′ ′ ′

+ + + + + + + + += + −S S S S  (9) 

This leads to a possibly infinite recursion, therefore we will approximate all the 
remaining probabilities as a function of some coarse indicators of how advantageous 
the resulting situations are. We introduce the expected free time ( ft  or ft′ ) of the 

robot that catches the ball, as the amount of time that the robot will be able to hold the 
ball without the direct presence of a rival, and is calculated as (analogous for ft′ ): 
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( ) ( )( )0; ;f k kt bnd t t′= − ∞S S  (10) 

With ( ); ;bnd c d e  defined as the quantity d lower bounded by c and upper bounded 

by e. We also define the aligning time ( at  or at′ ) of the robot that catches the ball as 

the amount of time that it will need for aligning to its opposite goal. If ′g  is the 

position of the opposite goal , at  is calculated as (analogous for at′ ): 

( ) ( ),k i k ka
a

R R

t
θ
ω ω

′− − −
= =

b x g b( (
 (11) 

 
(a)                          (b) 

Fig. 1. (a) Set of available kicks with their relative means and variances, each plotted polar 

rectangle is bounded by ( ), , , ,,r l r l l lθ θμ σ μ σ± ± . (b) illustration of 'φ  and aθ  for two objective 

points (A and B, respectively). 

We approximate ( )1 1,
g c
k k kP ω ω+ + S  as a function of the opening angle φ′ , which is 

the angle difference between the two posts of the goal from the point of the ball. 

( ) ( )( )1 1, 0; ;3 0; ;1 max
sec j

f ag c
k k k r k

j

t t
P bnd bnd u

θ

φω ω μ
σ+ +

− ⎛ ⎞′⎛ ⎞ ′= − −⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

S b g  (12) 

Where θσ  is the mean of the angle variances of the available kicks, and u is the step 

function, which will become 1 if it is possible to reach the goal, considering the 
maximum mean distance reached by an available kick. 
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The remaining probabilities are even fuzzier, therefore we make use of coarser 

indicators. We approximate ( )1 1,
g c
k k kP ω ω+ + + S  as: 

( ) ( ) ( )
1 1 1

max
, irg c

k k k f a
k

P t t
μ

ω ω ν+ + + = −
′−

S
b g

 (13) 

With a selected value of 1 0.3Hzν = . For the calculation of ( )1,
g c
k k kP ω ω ′

+ + S , we 

assume that a robot will not score in its own goal. Thus,  

( )1 1, 0g c
k k kP ω ω ′

+ + =S   (14) 

⇒ ( ) ( )1 1 1, ,g c g c
k k k k k kP Pω ω ω ω′ ′

+ + + + +=S S  (15) 

The future crossed score probability ( )1 1,
g c
k k kP ω ω ′

+ + + S  is approximated as: 

( ) ( )
1 1

max
, irg c

k k k
f k

P
t

μτω ω ′
+ + + ≈

′ ′−
S

b g
 (16) 

Where a value of 0.3secτ =  is found to yield satisfactory results. Summarizing, 

( )kGSS S  may be calculated using equations (3), (4), (6), (7), (8), (9), (10), (11), (12), 

(13), (15), (16). Figure 1.b illustrates some of the variables used in the calculation of 
the GSS. 

3.4   Decision Map 

In the moment where a robot holds the ball, it has infinite possible BCA’s that should 
be evaluated in order to decide for the best. We make a discretization of this space to 
be able to explore it. The discretization consists in a polar grid, where the distance is 
limited by the maximum distance that the ball can be kicked considering the available 
kicks, and the amount of time that the ball can be held. This grid is called decision 
map and consists in M objective points mp . Figure 2 shows some examples of 

decision maps. Accomplishing the generalized objective is defined as maximizing the 
expected GSS of the final position of the ball. The decision map is used to explore the 
space of feasible final positions of the ball after a BCA. 

3.5   Objective and Ball Control Action Selection 

If we leave R  fixed, GSS may be seen as a function of the ball position b, ( )GSSR b . 

Then, for each objective point mp  in the decision map, its ideal score mπ  is 

calculated as: 

( )( )m mGSS repπ = R p�  (17) 
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If mp  is out of the field, the ball will be replaced by a human referee in an arbitrary 

point (see [3] for details). Thus ( )mrep p  is the expected ball replacement position if 

mp  is out of the field, and in other case it is equal to mp .  

  
                                  (a)                                                                     (b) 

Fig. 2. Examples of decision maps and taken decisions, using the developed high-level 
strategy’s simulator. The polar grid is around the red robot that holds the ball. Lighter points 
correspond to higher scores in the decision map. The big red points correspond to the selected 
points. (a) Defensive situation, the red robot holding the ball is blocked by two blue robots, thus 
points out of the field are selected (even preferring them over a possible but risky pass to the 
goalie), because its partner will be very close to the ball after the referee replace it. (b) 
Offensive situation, where a leading pass is selected, preferring it over a direct pass. 

Taking into account objective points out of the field, the rep function has the nice 
effect, often observed in human players, that in some situations the robot may decide 
to kick the ball out of the field (see a simulated example en figure 2.a). Let us define 
the filtered score of the objective point mp  as: 

( )( )( )m mE GSS repπ = R b p  (18) 

Note that m mπ π≠ �  since there is an uncertainty in the final position of the ball after 

performing any kick. To consider this uncertainty, mπ  is calculated as the result of 

applying a Gaussian low-pass filter over each polar coordinate to mπ� . Consequently, 

smooth maxima of mπ�  are preferred over sharp ones.  

For the sake of simplicity, to calculate mπ�  and mπ  we use R as the estimation of 

the poses of all the robots in the moment when the decision is taken. However, R will 
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probably vary from the moment when the robot makes de decision of where to kick 
the ball, to the moment when the ball finally arrives to its final position b. We assume 
that the variation of R when time passes will always diminish the maxima of mπ , 

which is a reasonable assumption since as time passes by, other robots may block the 
way from the robot holding the ball to any given objective point. Thus, for each 
objective point mp  in the decision map, we select the index ( )ml p  of the required 

kick ( )ml pk  as: 

( ) ( )( )arg min , ,m d l m
l

l t=p k p R  (19) 

Where ( ), ,d l mt k p R  is the required dribbling time for kicking to the objective point 

mp , using the kick lk , and given the robots (teammates and opponents) poses R , 

and is calculated as: 

( ) , ,, , m l m l

d l m
R R

t
v

θ
ω

Δ Δ
= +

x
k p R  (20) 

With ,m lΔx  and ,m lθΔ  being respectively the required displacement and rotation of 

the robot to perform lk  and reach mp , if the kick results in its expected values ,r lμ , 

,lθμ . If the way from the robot to mp  is free, ,m lΔx  just aims to adjust the distance to 

mp  (the robot moves in the axis between it and mp ). If the way to mp  is blocked, 

,m lΔx  also considers an obstacle-avoiding component, which means that the robot 

will move to the closer free axis to mp , to the point at a distance ,r lμ  of mp . In both 

cases, ,m lθΔ  is calculated to align the robot with the needed angle to kick to mp  using 

lk . Once ( )ml p  is selected, the minimum dribbling time, ( )( ), ,
md mlt pk p R , is used to 

punish the final score mπ  of the objective point mp . 

( )( ) ( )( )2 , , , , 3

1
m mm d m d ml l

m

t tπ ν
π

⎧ − <⎪= ⎨
−⎪⎩

p pk p R k p R

∼
 (21) 

With a selected value of 2 0.12Hzν = . The condition in (21) ensures that only feasible 

points are considered (the robot is allowed to hold the ball for a maximum of 3 
seconds [3]). The selected objective point mp  is selected as the one that maximizes 

mπ . Figure 2 shows some examples of the calculation of mπ  in determined situations.  

4   Results 

As we have defined the decision making problem –in terms of maximizing the 
expected score advantage obtained– results should show that a team using the 
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presented decision making framework is able to beat, getting as much score advantage 
as possible, another team using another decision making framework. The complete 
benefits of the system should be noticeable in a standard 4 versus 4 robots match. To 
test the system and to be able to present comprehensive results, we have developed a 
high-level strategy simulator, UChile HL-SIM, which runs our four-legged code in 
simulated AIBO’s robots. Differing from our realistic simulator, UChilSim [6], 
UChile HL-SIM is not focused in realistic 3D visualization of scenes, neither in 
realistic dynamic interactions simulation, but it is intended for debugging specifically 
high-level strategy and behaviors. For that purpose, each simulated robot runs our 
strategy and actuation code, and the simulator brings them error-free perception and 
world modeling information. The result of the intended displacements of the robot is 
also simulated as error-free. Dynamic interactions between objects (ball, robots, and 
goals) are modeled in an idealized but comprehensive fashion (simplified 2D 
geometry). In order to provide a normal game flow, refereeing is also simulated, 
taking into account the RoboCup 2006 Four Legged League Competition Rules [3]. 
Figure 3 shows a screenshot of UChile HL-SIM. 

 

Fig. 3. UChile HL-SIM: High Level simulator used for testing the proposed strategy 

For testing and validation purposes, we tested the described probabilistic-based 
decision making strategy, in 10 simulated matches between a team which uses this 
new strategy against a team which uses the decision making system proposed in [1] 
(probabilistic kick selection). It should be stressed that in both cases the only 
difference in the robot control software (UChile) is the strategy module. The matches 
were always won by the team running the proposed approach with an average goal 
difference of 8.5 (see Table 1 for details on the results). In the simulated matches, it 
was evident how some of the described improvements, as leading passes and clearing 
outside the field, appeared. 
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Table 1. Detailed results of the simulated matches. The score of the team running the proposed 
strategy goes first. 

 

5   Conclusions 

We have presented a novel approach for general decision making in robot soccer, 
based on the definition of a game situation score function, and the consequent 
discrimination of more specific objectives as passing and shooting to the goal. 

The main advantage of the proposed system is that it relays only on the scored 
goals probability, and not in others conventionally taken into account such as pass 
success or ball possession time length. Additional advantages are the possibility of 
balancing the accuracy of the decision and the computational cost, by modifying the 
decision map resolution, and the consideration of the kicks’ result uncertainty. The 
assumption of arbitrary models for the calculation of some of the probabilities should 
be corrected in future works, for example by using a machine learning approach. 

The presented approach takes into account the uncertainty in the actions’ results 
(kicks PDF’s), but it does not take into account the uncertainty in the perception of 
the situations (vision, objects tracking and localization). We are planning to extend 
our work to make it able to consider the perceptual uncertainty. 

The presented high-level strategy simulator is very well suited for testing high-
level strategy and behaviors. We are planning to extend its capabilities in order to 
learn the parameters and morphology of the decision-making’s algorithms inside the 
behaviors of different levels. 

The preliminary results encourage us to continue developing our system. In 
particular, more factors may be included to better estimate some probabilities, but 
always keeping the conceptually hierarchized approach. On the other hand, some of 
the parameters used for calculating probabilities may be learned during a game, in 
order to adapt the strategy to the opponent characteristics. 
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Abstract. In this paper we present an approach for a team of robots to coopera-
tively improve their self localization through collaboratively tracking a moving 
object. At first, we use a Bayes net model to describe the multi-robot self local-
ization and object tracking problem. Then, by exploring the independencies be-
tween different parts of the joint state space of the complex system, we show 
how the posterior estimation of the joint state can be factorized and the moving 
object can serve as a bridge for information exchange between the robots for 
realizing cooperative localization. Based on this, a particle filtering method for 
the joint state estimation problem is proposed. And, finally, in order to improve 
computational efficiency and achieve real-time implementation, we present a 
method for decoupling and distributing the joint state estimation onto different 
robots. The approach has been implemented on our four-legged AIBO robots 
and tested through different scenarios in RoboCup domain showing that the per-
formance of localization can indeed be improved significantly.  

1   Introduction 

Autonomous robots need to know their own positions within the environment, and the 
positions of other robots and moving objects in order to complete their tasks 
individually or in a cooperative way. However, it is not an easy job to accurately 
estimate the robot’s own position as well as the state of the moving objects, because 
the information that robots receive through their sensors is inherently uncertain, and 
the control over their actuators is also inaccurate. Additionally, the estimating 
problem is made more difficult when there are unmodeled interactions or collisions 
between the robots or the robot haven’t seen any distinct landmarks for a long time, 
which are especially typical in RoboCup domain.  

During the soccer games, ball is the focus of robot’s attention. Searching for ball, 
chasing and dribbling the ball and seeking for opportunities to kick a goal are usually 
the most important tasks of the robots. So, it is often the cases that there are few or no 
distinct landmarks in robot’s sight. As a consequence, odometry errors accumulate as 
the time goes by without compensation, and the accuracy and reliability of localization 
result is seriously affected. However, just as mentioned above, the ball is usually in the 
sight of the robots. If there are some ways to improving the robots’ self localization 
based on the ball information, much better performance can be expected. 
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Considering all of the factors mentioned above, we enable the robots to share 
information and improve their self localization cooperatively by making them track 
the moving objects collaboratively and then refine their self localization results based 
on the common knowledge of the objects. We implement this idea on a team of four-
legged AIBO robots to collaboratively track and estimate the state of a ball and use 
the ball information to improve their self localization simultaneously.  

This paper is organized as follows. After introducing the related works in the next 
section, we present our multi-robot cooperative localization and ball tracking method 
in Section 3. Experimental results are given in Section 4, followed by conclusions 
drawn in Section 5. 

2   Related Work 

In Recent years, multi-robot cooperative localization has received increasing attention 
in robotics community. Most of the works on this problem are based on the 
assumption that the robots have abilities to detect and identify each other and estimate 
their relative positions [1, 2, 3, 4, 5]. They usually requires sophisticated image 
processing methods or adding artificial marks onto the robot platform. However, these 
may not be granted in many cases, especially in RoboCup competitions. Because 
adding distinctly colored marks to the AIBO robots is not allowed by rules, so it is 
quite difficult to identify the robots or accurately estimate their relative positions, due 
to the irregular and complex shape of the robot.  

To our knowledge, the first work using moving objects’ information to improve the 
robots’ self localization is [6], in which Schmitt et al presented a method for enabling 
a team of robot to estimate their joint positions in a known environment and track the 
positions of autonomously moving objects (e.g., the ball). By using the ball’s position 
estimations received from the other robots to correct the robot’s own pose, the state 
estimators of different robots can cooperate to increase the accuracy and reliability of 
the estimation process. But this method is based on Kalman filtering, which is 
inefficient to track multiple ball hypotheses in face of false positive ball detection and 
sensor noises. In [7], Kwok and Fox presented a Rao-Blackwellised particle filtering 
method for estimating the robot’s self location as well as the ball state. It provides a 
powerful model for multiple model object tracking and also allows the robot to infer 
where it is by observing the ball. However, the cooperative localization or object 
tracking problem are not discussed in their work. In another most recent work [8], 
Göhring presented an approach to estimate the position of objects tracked by a team 
of mobile robots by using the spatial relation of the objects respect to stationary 
landmarks detected in the same camera images, and then use these objects for better 
self localization. Though the objects’ position estimation resulted by this method is 
robust to the localization errors of the robots, it requires that each robot can detect the 
ball as well as some landmarks at the same time. Moreover, only the static object 
model is considered in their work. 
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3   Multi-robot Cooperative Localization through Collaborative 
Object Tracking Using Particle Filters 

In this section, we will first describe the multi-robot localization and object (ball) 
tracking problem using Bayes net. Then, through formal analysis, we will show how 
this joint state estimation problem can be factorized and tackled using particle filters. 
Finally, we conclude that the moving ball can serves as a bridge to realize cooperative 
localization, and an efficient distributed implementation method is presented. 

3.1   Problem Description Using Bayes Net 

Without loss of generality, we consider a system consisting of a pair of robots and a 
ball. Let 1 2, ,k k kb r r< >  denote the state of the system at time k. , , , ,k b b b b bb x y x y m=< >� �  
denotes the state of the ball in global coordinates, where , , ,b b b bx y x y� �  represent ball 
location and velocity and {0,1, 2}bm ∈  indicates the interaction model of the ball and 
robots. 0bm =  means the ball is not grabbed by any teammate of the robots, while 

bm = 1 or 2 indicates that the ball is grabbed by robot 1 or 2 respectively. 
, ,j j j j

k r r rr x y θ=< > , 1, 2j = , is the robot location and orientation on the field. Moreover, 
denote the observations of the ball and landmarks made by robot j as j

kz , which is 
provided in relative bearing and distance. 

A graphical model description of the state estimation problem of the system is 
given in Fig.1, where the nodes represent different random variables and the arrows 
indicate dependencies between these variables. The model shows the following 
relationships: 

1)  Robot-j’s location at time k, j
kr , only depends on the previous location 1

j
kr −  and 

the robot motion control 1
j

ku − .  
2) The observations j

kz  consist of ,j L
kz  and ,j B

kz , which describe landmark 
observations and ball observations respectively. ,j L

kz  only depend on the current 
robot location j

kr  (since the map of field is given); relative ball observations ,j B
kz  

only depend on the current ball and robot positions. 
3)  The location, velocity and interaction model of the ball kb  typically depend on the 

previous ball state 1kb − , the actions of all robots, 1
1ku − , 2

1ku − , and the robots 
location 1

kr , 2
kr . However, just as the dashed arrows indicate, the existence of the 

relationship between robot location, motion control and ball state depends on 
which robot grab the ball, i.e. the component bm  in kb . For example, if bm = 1, 
i.e. ball is grabbed by robot 1, then the ball location is tightly attached to the robot 
location 1

kr  and the arrow from 1
kr  to kb  exists.  

3.2   Factorizing the Joint State Space Posterior of Multi-robot Cooperative 
Localization and Object Tracking 

Since the dependencies between different parts of the joint state space are defined based 
on Bayes net description, we can address the problem of filtering, which aims to 
compute the posterior over the joint state vector 1 2, ,k k kb r r< >  conditioned on all sensor 
measurements obtained so far, i.e. to compute: 

1 2 1 1 2 2
1: 0: 1 1: 0: 1( , , | , , , )k k k k k k kp b r r z u z u− −                                            (1) 
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Fig. 1. Bayes net for multi-robot localization and ball tracking. The nodes in this graph 
represent the different parts of the dynamic system at consecutive time instances, and the edges 
represent dependencies between the individual parts of the state space. Filled circles indicate 
system state variable nodes, while the other circles stand for observations and motion control. 

Based on the posterior estimation resulted from previous step, (1) can be written in a 
recursive form: 

1 2 1 1 2 2
1: 0: 1 1: 0: 1( , , | , , , )k k k k k k kp b r r z u z u− −  

1 2
1 1 1

1 2 1 2 1 1 2 2
1 1 1 1 1

, ,

( , , | , , , , , , )
k k k

k k k k k k k k k k

b r r

p b r r b r r z u z u
− − −

− − − − −= ⋅∫∫∫  

1 2 1 1 2 2 1 2
1 1 1 1: 1 0: 2 1: 1 0: 2 1 1 1( , , | , , , )k k k k k k k k k kp b r r z u z u db dr dr− − − − − − − − − −                        (2) 

The second term in (2) is the previous posterior, and the first term can be further 
factorized by employing the dependencies and independencies described in Bayes net 
model presented above. First, it can be factorized as: 

1 2 1 2 1 1 2 2
1 1 1 1 1( , , | , , , , , , )k k k k k k k k k kp b r r b r r z u z u− − − − −  

1 2 1 2 1 1 2 2 1 2 1 2 1 1 2 2
1 1 1 1 1 1 1 1 1 1( | , , , , , , , , ) ( , | , , , , , , )k k k k k k k k k k k k k k k k k k kp b r r b r r z u z u p r r b r r z u z u− − − − − − − − − −=    (3) 

Since when 1 2 1 2
1 1 1, , , ,k k k k kr r b u u− − −  are given kb  can be determined, (3) can be written as: 

1 2 1 2 1 1 2 2
1 1 1 1 1( , , | , , , , , , )k k k k k k k k k kp b r r b r r z u z u− − − − −  

1 2 1 1 2 2 1 2 1 2 1 1 2 2
1 1 1 1 1 1 1 1( | , , , , , , ) ( , | , , , , , , )k k k k k k k k k k k k k k k k kp b r r b z u z u p r r b r r z u z u− − − − − − − −=                 (4) 

Then, according to Bayes rule, we have: 

1 2 1 2 1 1 2 2
1 1 1 1 1( , , | , , , , , , )k k k k k k k k k kp b r r b r r z u z u− − − − −  

1 2 1 1 2 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1( | , , , , , , ) ( , | , , , , , , )k k k k k k k k k k k k k k k k kp b r r b z u z u p z z r r b r r u u− − − − − − − −∝ ⋅  

1 2 1 2 1 2
1 1 1 1 1( , | , , , , )k k k k k k kp r r b r r u u− − − − −      (5) 
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Since 1
kr  only depends on 1 1

1 1,k kr u− − , and 2
kr  only depends on 2 2

1 1,k kr u− − , the rightmost 

term in (5) can be factorized as: 

1 2 1 2 1 2 1 1 1 2 2 2
1 1 1 1 1 1 1 1 1( , | , , , , ) ( | , ) ( | , )k k k k k k k k k k k k kp r r b r r u u p r r u p r r u− − − − − − − − −=                              (6) 

Exploiting the dependencies in the graph model, we know that 1 2,k kz z  are conditional 

independent from 1 2
1 1,k kr r− − , so the second term in (5) can be written as: 

1 2 1 2 1 2 1 2 1 2 1 2 1 2
1 1 1 1 1 1 1 1( , | , , , , , , ) ( , | , , , , )k k k k k k k k k k k k k k k kp z z r r b r r u u p z z r r b u u− − − − − − − −=                     (7) 

Substituting (6) and (7) into (5), we have: 

1 2 1 2 1 1 2 2
1 1 1 1 1( , , | , , , , , , )k k k k k k k k k kp b r r b r r z u z u− − − − −  

1 2 1 1 2 2 1 2 1 2 1 2
1 1 1 1 1 1( | , , , , , , ) ( , | , , , , )k k k k k k k k k k k k k k kp b r r b z u z u p z z r r b u u− − − − − −∝ ⋅  

1 1 1 2 2 2
1 1 1 1( | , ) ( | , )k k k k k kp r r u p r r u− − − −  

1 2 1 2 1 2 1 1 1 2 2 2
1 1 1 1 1 1 1( , , | , , , , ) ( | , ) ( | , )k k k k k k k k k k k k k kp b z z r r b u u p r r u p r r u− − − − − − −=  

1 2 1 2 1 2 1 2 1 1 1 2 2 2
1 1 1 1 1 1 1( , | , , ) ( | , , , , ) ( | , ) ( | , )k k k k k k k k k k k k k k k k kp z z r r b p b r r b u u p r r u p r r u− − − − − − −=  

1 1 2 2 1 2 1 2 1 1 1 2 2 2
1 1 1 1 1 1 1( | , ) ( | , ) ( | , , , , ) ( | , ) ( | , )k k k k k k k k k k k k k k k k k kp z r b p z r b p b r r b u u p r r u p r r u− − − − − − −=  

(8) 

Substituting (8) into (2) we get: 

1 2 1 1 2 2
1: 0: 1 1: 0: 1( , , | , , , )k k k k k k kp b r r z u z u− −  

1 2
1 1 1

1 1 2 2 1 2 1 2 1 1 1
1 1 1 1 1

, ,

( | , ) ( | , ) ( | , , , , ) ( | , )
k k k

k k k k k k k k k k k k k k k

b r r

p z r b p z r b p b r r b u u p r r u
− − −

− − − − −∝ ⋅∫∫∫  

2 2 2 1 2 1 1 2 2 1 2
1 1 1 1 1 1: 1 0: 2 1: 1 0: 2 1 1 1( | , ) ( , , | , , , )k k k k k k k k k k k k kp r r u p b r r z u z u db dr dr− − − − − − − − − − − −  

(9) 

It is clearly shown in equation (8) that, the variable kb  (ball) serves as a linkage 

between the states of the robots, 1
kr  and 2

kr , which allows the information flow to 

travel from one robot to another and vice versa to achieve cooperative localization.  

3.3   Particle Filtering for Joint Estimation 

To implement the idea presented in the previous subsection, we have to specify the 
representation of the posterior distribution. We utilize particle filtering, which 
represent posteriors by sets of weighted samples, or particles: 

( ) ( ){ , |1 }i i
k k kS s w i N= < > ≤ ≤  

where each particle ( ) ( ) 1( ) 2( ), ,i i i i
k k k ks b r r=< >  and N  is the total number of samples. The 

task is to generate samples distributed according to (1) based on the samples drawn 
from the posterior at k-1, denoted by 1kS − . We generate the different components of 

( )i
ks  stepwise according to (8). In the first step, a sample ( ) ( ) 1( ) 2( )

1 1 1 1, ,i i i i
k k k ks b r r− − − −=< >  is 
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drawn from 1kS − , and then we draw new robot pose 1( )i
kr  and 2( )i

kr  for robot 1 and 

robot 2 respectively, according to:  

                                              1( ) 1( ) 1( ) 1
1 1( | , )i i i

k k k kr p r r u− −∼                                                (10) 

                                              2( ) 2( ) 2( ) 2
1 1( | , )i i i

k k k kr p r r u− −∼                                               (11) 

This gives us ( ) 1( ) 2( )_, ,i i i
k k ks r r=< > , where _ denotes uninitialized value. Then, the 

sample’s ball state ( )i
kb  is estimated: 

                                   ( ) ( ) 1( ) 2( ) ( ) 1 2
1 1 1( | , , , , )i i i i i

k k k k k k kb p b r r b u u− − −∼                                      (12) 

Finally, the importance weight of the sample ( )i
kw  is calculated as: 

( ) 1 1( ) ( ) 2 2( ) ( )( | , ) ( | , )i i i i i
k k k k k k kw p z r b p z r bη= ⋅                                    (13) 

where η  is a normalizing factor which ensures all of the importance weights sum up 

to 1. Note that, since the observations j
kz  are composed of landmarks detection 

,j L
kz and ball detection ,j B

kz , equation (13) can be further factorized as: 

( ) 1, 1, 1( ) ( ) 2, 2, 2( ) ( )( , | , ) ( , | , )i L B i i L B i i
k k k k k k k k kw p z z r b p z z r bη= ⋅  

1, 1( ) 1, 1( ) ( ) 2, 2( ) 2, 2( ) ( )( | ) ( | , ) ( | ) ( | , )L i B i i L i B i i
k k k k k k k k k kp z r p z r b p z r p z r bη= ⋅                 (14) 

where the facts that, when the robots’ pose ( )j i
kr  and ball state ( )i

kb  are given the 

landmarks detection and ball detection are independent, and the landmark observation 
only depends on the robot location (as the map of the environment is already known), 
are used.  

3.4   Distributed Implementation 

There are different ways to implement our multi-robot cooperative localization and 
ball tracking method. The most intuitive one is to make every robot maintain and 
estimate the full joint state vector 1 2, ,k k kb r r< > . But, unfortunately, it requires a large 

amount of particles to achieve satisfying estimation result, due to the high dimension 
of the joint state space. As the members of the robots increase, this problem becomes 
more serious. It will be computationally too demanding for the AIBO robots. 

Here we present a distributed method in which each robot only have to estimate its 
own self location and ball state, then through communication the information are 
shared and cooperative localization and ball tracking is achieved. 

Introducing two affiliated factors 1
kb  and 2

kb , which correspond to the ball 

estimation made by robot 1 and 2 respectively, the third term in equation (9) can be 
transformed as: 
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1 2 1 2
1 1 1( | , , , , )k k k k k kp b r r b u u− − −  

1 2

1 2 1 2 1 2 1 2
1 1 1

,

( , , | , , , , )
k k

k k k k k k k k k k

b b

p b b b r r b u u db db− − −= ∫∫  

1 2

1 2 1 2 1 2 1 2 1 2
1 1 1

,

( | , ) ( , | , , , , )
k k

k k k k k k k k k k k k

b b

p b b b p b b r r b u u db db− − −= ∫∫  

1 2

1 2 1 1 1 2 2 2 1 2
1 1 1 1

,

( | , ) ( | , , ) ( | , , )
k k

k k k k k k k k k k k k k

b b

p b b b p b r b u p b r b u db db− − − −= ∫∫                 (15) 

This is attractive, since it allows each robot to estimate the ball state individually and 
then through an information fusion process the team ball estimation kb  is obtained.  

Now, we present our method for performing the joint estimation in a distributed 
form: first each robot only estimate the joint state vector ,j j

k kb r< > , i.e. the individual 

ball state and self location, based on its own observations; then they send their 
estimation results to their teammates as well as receive the information coming from 
their teammates; whereafter, the team ball state kb  is estimated and the partial joint 

state , j
k kb r< >  maintained by each robot is finally updated. 

Additionally, we enable each robot to use two kinds of ball model: egocentric ball 
model and global ball model. The egocentric ball model represents the ball state in 
robot-centric coordinate. It is more robust against global localization errors, and its 
uncertainty is much smaller than global ball state so that fewer particles are needed to 
represent its probabilistic distribution. The global ball model represents the ball state 
in global allocentric reference coordinate, which is used for communicating 
information to other robots. By associating egocentric ball state with robot’s self 
location, the global ball state can be calculated. And the global ball estimation 
resulting from all robots are fused to get the team ball estimation. It is none other but 
this team ball estimation that enables the robots to act harmoniously and position 
themselves strategically on the field, and further to improve their self localization 
cooperatively.  

Suppose, for any robot j, we use ,b Ln  particles ( )l j i
kb , ,[1, ]b Li n∈ to represent the 

probabilistic distribution of egocentric ball state, and rn particles ( )j
kr

τ , [1, ]rnτ ∈  for 

self localization. The procedure of the cooperative localization and ball tracking 
algorithm running on each robot j is as follows: 

1) Predict self location: generate robot pose ( ) ( ) ( )
1 1( | , )j j j j

k k k kr p r r uτ τ τ
− −∼ ; 

2) Update self localization using landmark measurement: if any landmark is 
detected, the weights ( )j

kw τ  of the samples ( )j
kr

τ  are calculated as 
( ) , ( ) ( )

1( | )j j L j j
k k k kw p z r wτ τ τ

−= ⋅ , if the sum of the weights is smaller than a given 

threshold, substitute the low-weight samples by new samples randomly drawn 
according to the observations (similar to the sensor resetting method presented in 
[9]); else, if no landmark is detected, go to next step; 

3) Predict egocentric ball state: if the ball is grabbed by robot j, the relative 
position of the ball ( )l j i

bx , ( )l j i
by  in all particles ( )l j i

kb  are set to zero; else, if the 
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ball is not grabbed by robot j, the state of the ball is predicted as 
( ) ( ) ( ) 1

1 1( | , )l j i l j i l j i
k k k kb p b b u− −∼ , and the weights of these particles are set to be equal; 

4) Egocentric ball update: a) if the ball is neither seen nor grabbed by the robot, 
go to the final step; b) if the ball is grabbed, go to next step; c) if the ball is seen, 
update the weights of egocentric ball particles as ( ) , ( ) ( )

1( | )l j i j B l j i l j i
b k k k b kw p z b w −= ⋅ , 

and then normalize these weights; 
5) Generate robot pose hypotheses: calculate robot pose hypotheses by clustering 

the particles ( )j
kr

τ  of the self location, and then pick out hn three robot pose 

hypotheses with the highest probabilities; 
6) Generate ball particles in the global coordinate: associate the ,b Ln  egocentric 

ball particles ( )l j i
kb  with each of the robot pose hypotheses resulting from the last 

step to generate ,h b Ln n× particles in global coordinate ( )g j i
kb ; calculate the 

weights ( )g j i
b kw  of ( )g j i

kb  by multiplying the weights of the egocentric ball 

particles and the probability of the robot pose hypotheses; 
7) Subsample global ball particles to obtain representative particles: in this 

step we follow the method presented in [10], i.e. first the soccer field is 
recursively split into cells to form a quad-tree with a maximum depth of maxd ; 

then for each cell a representative particle is calculated as the weighted average 
of the particles contained in that cell, and the weight of the representative 
particle is the sum-weight of the involved particles; finally, the repn  

representative particles with the highest weights are chosen with their weights 
normalized; 

8) Send/receive representative ball particles to/from teammates: representative 
global ball particles resulting from the last step are sent to/received from the 
teammates through wireless communication; 

9) Calculate the entropy of robot pose estimation: based on the particles and 
weights resulting from step 1) and 2), the entropy of the robot pose is calculated 
as a metric of the underlying uncertainty in the pose estimation; 

10) Estimate team ball location hypotheses based on the fused information: a) if 
the entropy of robot pose is within a certain range, go to the final step; b) 
otherwise, if the entropy is higher than the given threshold, the robot will 
calculate the global ball position hypotheses by utilizing the received 
representative particles together with its own representative particles; these 

repn n×  particles ( n  is the total number of robots) are classified into clusters 

following a clustering method similar to step 5), and the location hypothesis 
with the highest probability t

kb  is selected out; 

11) Update self localization using team ball estimation: update the particle set 
representing the robot pose (resulting from step 1) and 2)) by calculating the 
weights as ( ) , ( ) ( )( | , )j j B j t j

k k k k kw p z r b wτ τ τ← ⋅ ; if the sum-weight of particles is 

smaller than a given threshold, substitute some of the lowest-weight samples by 
new samples drawn according to the team ball location t

kb  and ball observation 
,j B

kz  (similar to the method used in Step 2)); 
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12) Particle weight normalization: at this final step of iteration, the weights of the 
particles representing the robot pose ( )j

kw τ  are normalized ensuring them sum up 

to 1. 

4   Experiments and Results 

To verify the effectiveness of the multi-robot cooperative localization and ball 
tracking method, we conduct experiments on Sony AIBO robots on the field of 
RoboCup Soccer 4-legged League. Our method is compared with the reference 
method presented in [11], which has been adopted by more than 6 different teams in 
RoboCup Soccer 4-legged League and its source code is publicly available. 

We set up two scenarios in our experiments, both of which went on RoboCup 2006 
Four-legged League soccer field. Throughout all of the experiments, the rule that ‘the 
robot should not carry ball for longer than 3 seconds at one time’ is obeyed. The 
parameters in the algorithm presented in the previous section are set as: nb,L = 40, nr = 
100, nh = 3, dmax = 6, nrep = 12. 

4.1   Scenario A: 1 Team of 4 Robots, RoboCup 2006 Field 

In our first test scenario, a team of 4 robots are placed on the field, without opponents 
or other obstacles. This scenario represents a “best case” scenario to evaluate the 
performance of the two localization methods, because there is no collision between 
the robots, and the chances that the ball be occluded from the sight of the robots are 
smaller. During the experiment, robots NO.1~ NO.3 are expected to stay at the fixed 
points on the field (shown as the small solid black squares in Fig. 2(a)). They 
concentrate on tracking the ball, but also have to periodically distract their attention 
from it in order to see the landmarks and localize themselves. The positions of these 
three robots keep not changed, but their orientations can be adjusted by themselves so 
as to face directly to the moving ball and keep tracking of it. Robot NO.4 (its 
localization results are examined) can walk freely, chase the ball and carry ball to go 
toward 5 appointed locations (the small solid red squares labeled L#1~L#5 in  
Fig. 2(a)) sequentially. When the robot gets quite near to an appointed location, the 
experimenter would tap the back button on the robot manually so as to conduct it to 
change its destination and go to the next appointed location.  

We compare the performance of the reference method with our cooperative 
localization method by running them in parallel on the robots and making them 
process exactly the same sensor data. The entropy [12, 13] of robot NO.4’s pose 
estimations resulting from the two methods are automatically recorded in a log file 
one time per second by the robot. The ground truth of robot positions are obtained as 
follows: every ten seconds, the robot and localization algorithms pause; the real 
position of the robot is measured manually with the current localization results of the 
two methods recorded; then, by tapping the head button of the robot manually, it 
continue to move.  

Fig.2 depicts the results for this scenario. At beginning, robot NO.4 was placed at 
the start point (small red solid circle in Fig. 2(a)), then every ten seconds its real 
position was recorded (magenta ☆ in Fig. 2(a)). The estimated positions of our 
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      (b)                                                                   (c) 

Fig. 2. Results for scenario A: (a) robot’s real positions and the estimated positions of the two 
methods. (b) Localization errors. (c) Entropy of pose estimations at different time instances. 

method and reference method are shown by green △ and blue * respectively. Note 
that, the colored lines linking the recorded positions in Fig. 2(a) do not stand for the 
trajectories, but only show the sequential order of the positions. 

The localization errors, which are measured by the distance between the real 
positions and estimated positions, are shown in Fig. 2(b). In Fig. 2(c), the entropy of 
pose estimation resulting from the two methods is visualized. It is clear that both the 
localization errors and entropy of our cooperative localization method are 
significantly smaller than that of the reference method. 

4.2   Scenario B: Real Game, 2 Teams of 6 Robots, RoboCup 2006 Field 

This scenario aims to deal with the real game situation: two teams of robots play 
competitively on a standard RoboCup 2006 field. Through this scenario, we can 
examine that to what level our cooperative localization method can promote the 
performance of robot’s self localization.  
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Since we only have 6 AIBO robots at hand, we can only assign 3 members for each 
team. Moreover, because it is a real soccer game, the ground truth of robots’ positions 
are difficult to measure manually. But, the entropy of robot pose is a useful metric to 
measure the uncertainty of the robot’s state. So, in this scenario, we evaluate the 
performance of the two methods by focusing on comparing the resulted entropy.  

The experiment lasted for 5 minutes. Each team has 3 robots: goalie, defender and 
attacker. Since the attacker is the most active role in the team, it has more chances to 
collide with opponent robots when chasing the ball or seeking for opportunity to 
shoot. So, its self localization results can to some extent provide a “worst case” 
scenario for localization algorithms’ performance. Therefore, we recorded the red 
attacker’s pose estimation entropy during the game. The entropy was written into a 
log file by the robot at a rate of one record per second. Fig.3 depicts the results. 
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Fig. 3. Entropy of pose estimation at different time instances in Scenario B 

It is clear that our cooperative localization method outperforms the reference 
method again. And, by examining the result carefully, we found that the difference 
lying in the performances of the two methods becomes less significant after the time 
instance labeled by the dashed line in Fig.3. This is due to the fact that there were 
more collisions between the attacker and the opponent robots and the ball was usually 
occluded by the robots. There were fewer chances for the red attacker’s teammates to 
see the ball and provide accurate team ball estimation. So, the improvement made by 
utilizing ball information to promote self localization was affected, and became less 
significant. This is reasonable and consistent with our common knowledge. 

5   Conclusion 

In this paper we presented a probabilistic method for multi-robot cooperative 
localization and object tracking. By viewing the object and robots as a whole system, 
a Bayes net model is established to describe the joint state estimation problem. Then, 
through exploring the independences between different parts of the state space, we 
show how the posterior estimation of the joint state can be factorized and tackled 
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using a particle filtering method. Finally, in order to improve computational 
efficiency and achieve real-time implementation, we distributed the joint state 
estimation task to different robots: first, each of the robot estimate their self location 
and ball state based on their own sensor data; then, by exchanging information 
between the robots the ball state estimation is refined; at last, each robot use the 
refined ball state estimation to correct their self localization.  

By utilizing the proposed method, the state estimation modules of different robots 
can cooperate to increase the accuracy and reliability of their self localization and ball 
state estimation. It is capable of dealing with multiple hypotheses lying in the state of 
both the ball and robots. The experimental results show that the proposed method is 
effective and can evidently improve the robots’ self localization in RoboCup domain. 
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Abstract. In this paper we present a novel approach to estimate the
position of objects tracked by a team of robots. Moving objects are com-
monly modeled in an egocentric frame of reference, because this is suffi-
cient for most robot tasks as following an object, and it is independent of
the robots localization within its environment. But for multiple robots,
to communicate and to cooperate the robots have to agree on an allocen-
tric frame of reference. Instead of transforming egocentric models into
allocentric ones by using self localization information, we will show how
relations between different objects within the same camera image can be
used as a basis for estimating an object’s position. The spacial relation
of objects with respect to stationary objects yields several advantages:
a) Errors in feature detections are correlated. The error of relative po-
sitions of objects within a single camera frame is comparably small. b)
The information is independent of robot localization and odometry. c)
Object relations can help to detect inconsistent sensor data. We present
experimental evidence that shows how two non-localized robots are ca-
pable to infer the position of an object by communication on a RoboCup
Four-Legged soccer field.

1 Introduction

For a mobile robot to perform a task, it is important to model its environment,
its own position within the environment and the position of surrounding objects,
which can be other robots as well. This task is made more difficult when the
environment is only partially observable. The task is characterized by extracting
information from the sensor data and by finding a suitable internal representation
(model).

In hybrid architectures [1], basic behaviors or skills, such as, e.g., following a
ball, are often based directly on sensor data, e.g., the ball percept. Maintaining
an object model becomes important if sensing resources are limited and a short
term memory is required to provide an estimate of the object’s location in the
absence of sensor readings.

Modeling objects and localization is often decoupled to reduce the computa-
tional burden. In this loosely-coupled system, information is passed from local-
ization to object tracking. The effect of this loose coupling is that the quality of
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the localization of an object in a map is determined not only by the uncertainty
associated with the object being tracked, but also by the uncertainty of the ob-
server’s localization. In other words, the localization error of the object is the
combined error of allocentric robot localization and the object localization error
in the robot coordinate frame.

For this reason, robots often use an egocentric model of objects relevant to
the task at hand, thus making the robot more robust against global localization
errors. A global model is used for communicating information to other robots
[11] or to commonly model a ball by many agents with Kalman filtering [2]. In
all cases, the global model inherits the localization error of the observer.

We address this problem by modeling objects in allocentric coordinates from
the start. Furthermore in RoboCup one can see a removal of more and more
uniquely identifiable landmarks during the last years. The number beacons in
the Four-Legged League has decreased from six to two beacons within four years.
Therefore in this paper we focus on using object to field line relations.

In feature based belief modeling, features are extracted from the raw sensor
data. We call such features percepts and they correspond directly to objects in
the environment detectable in the camera images. In a typical camera image of
a RoboCup environment, the image processing could, for example, extract the
following percepts: ball, line point, so called edgel, opponent player, and goal.
A edgel describes in our case the detection of a point that lies on a field line.
Here it contains the position of that point relative to the robot in 2D space
and the normal vector angle of the field line in this point, relative to the robot.
Usually percepts are considered to be independent of each other to simplify
computation, even if they are used for the same purpose, such as localization.
Using the distance of features detected within a single camera image to improve
Monte-Carlo Localization was proposed by [6]. The idea of using object relations
has already been used in various map buildings tasks [12]. Using the spacial
ordering of landmarks in the image for self localization was introduced by [14].

When modeling objects in relative coordinates, using only the respective per-
cept is often sufficient. However, information that could help localize the object
within the environment is not utilized. That is, if the ball was detected in the
image right next to a goal, this helpful information is not used to estimate its
position in global coordinates.

We show how using the object relations derived from percepts that were ex-
tracted from the same image yields several advantages:

Sensing errors. As the object of interest and the reference object are detected in
the same image, the sensing error caused by joint slackness, robot motion, etc.
becomes irrelevant as only the relation of the objects within the camera image
matters.

Global localization. The object can be localized directly within the environment,
independent of the quality of current robot localization.

Communication. Using object relations offers an efficient way of communicating
sensing information, which can then be used by other robots to update their
belief by sensor fusion.
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Fig. 1. As testbed served the play field of the Sony 4-Legged League. Flags, goals, lines
and the ball can be found on the field at fixed positions as shown.

1.1 Outline

We will show how relations between objects in camera images can be used for
estimating the object’s position within a given map and in which way different
types of information can be used for this task. Particularly we want to analyze
how information from non-uniquely identifiable objects as field lines can be in-
corporated. We will present experimental results using a Monte-Carlo Particle
Filter to track the ball. Furthermore, we will show how communication between
agents can be used to combine incomplete knowledge from individual agents
about object positions, allowing the robot to infer the object’s position from
this combined data.

Our experiments were conducted on the color coded field of the Sony Four
Legged League using the Sony Aibo ERS-7, which has a camera resolution of
208 ∗ 160 pixels YUV and an opening angle of only 55o.

2 Object Relation Information

In a RoboCup game, the robots permanently scan their environment for land-
marks as there are flags, goals, the ball and field lines. We abstract from the
algorithms which recognize the ball and the landmarks in the image as they are
part of the image processing routines. In the next section we will give a brief
overview over the information to be gained from each of the percepts, which is
already described in more detail in [4].

2.1 Information Gained by Percepts

While describing percepts the robot receives, we want to distinguish uniquely
identifiable objects from those which can not be uniquely identified. Fig. 2 gives
an example of possible percepts the robot can perceive.
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a) b) c)

Fig. 2. Examples for what the robot can perceive: a) Flag and the ball, b) goal and
the ball, c) a field-line and the ball

)b)a

)d)c
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Fig. 3. Single percept: a) When a flag is seen, a circle containing all possible robot
positions remains, b) The circle shows all possible positions for a seen goal. Light grey
robot shapes represent possible robot positions; Two percepts in one image c) When
seeing a flag and a ball in one image, the distance dbl of the ball to the flag can be
calculated; for all possible ball positions a circle remains, d) same situation for a seen
goal and a ball, the spiral arc represents all possible ball positions.

Unique Objects. When seeing a two-colored flag, a robot actually perceives the
left and right border of the flag, which enables it to calculate the distance and
the angle to the flag (fig. 3 a). In the given approach this information is not being
used for self localization but for calculating the distance from other objects as the
ball to the flag. If a goal is detected, the robot can measure the angle between the
left and the right goal-post. For a given goal-post angle the robot can calculate
its distance and angle to a hypothetical circle center, whereas the circle includes
the two outer points of the goal-posts and the point of the robot camera (fig. 3 b).
If a ball is perceived, the distance to the ball and its direction relative to the
robot can be calculated. So far all percepts we described are more or less unique,
i.e., every percept can be assigned to a certain object in the robot’s environment.
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Table 1. Percept Statistics (Example)

Percentage of Percept Occurance in Images

Ball Flag Goal Line

35 52 22 59

Only Ball Ball and Flag Ball and Goal Ball and Line

3 24 8 28

)b)a

Fig. 4. a) A line-point (small circle) is seen together with a ball. The edgel data contains
the position of the line on the field and the normal vector of the corresponding line
(small arrows). Therefrom the ball distance to the line and the angle from the line-point
to the ball can be calculated; b) Grey dotted lines represent all remaining possible ball
positions on the field, when the ball-line percept is known; for better understanding the
real robot position is drawn in detail, the other (schematic) robot drawings represent
other possible robot and ball positions on the field.

Now we want to describe what kind of information can be gathered from field
lines as an example for non-unique objects.

Non-unique Objects. On a soccer field, line information is a useful feature to
reason about the robot position or about object positions. As can be seen in
table 1, field lines are very often present in robot images - often together with
other percepts as flags, goals or the ball. Now we will analyze which information
line data can bring. We will investigate this question for the case, in which a ball
and a line are seen simultaneously. When our robot perceives a line, it actually
perceives one or more points of the line, together with the normal vector of the
line, as fig. 4 a) shows. When a ball is seen in the same image as well, the robot
can calculate a shape, containing all possible ball positions on the field. When,
e.g., a ball is seen 10 cm away from an edgel in an angle of 45◦, all points on the
field are possible ball positions, which lie in 10 cm and an 45◦ angle from any
edgel of the field, see fig. 4 b). Or very easy speaking: when the robot sees a ball
directly on a field line, then every point on any field line could be a possible ball
position.

When there is more than just one line percept in the image, many approaches
exist to combine different edgels to one or more different lines [10]. Every edgel



58 D. Göhring

)b)a

Fig. 5. a) The robot sees a ball next to two different lines; b) assuming, that the robot
perceived for each of both lines an edgel percept, resulting in two solution sets (weak
grey and strong orange dotted lines). One can calculate the remaining possible ball
positions by cutting both solution spaces. The cut is then reduced by all solutions
which would result in a wrong angle between the line percepts, related to the ball.
Crossed circles (red) represent all remaining possible ball positions on the field.

can be treated as different evidence for modeling the object’s position. This is
especially interesting in situations where line crossings or other alignments of
different lines occur at once. Being able to relate an object’s position to different
lines constraints the solution space for the remaining ball positions drastically,
as fig. 5 b) shows. Every ball-edgel pair enables the robot to calculate possible
ball positions on the field (the solution space) as in fig. 4 b). When seeing two
or more of these ball-line pairs, the resulting ball positions can be calculated as
the cut operation of all these solution spaces. The remaining solution space can
be reduced even more, because the angle between the different edgels related to
the ball is also measurable from the image (fig. 5 b)).

2.2 Dependencies between Percepts / Sensor Model

In this section we want to analyze the correlation between errors of different
percepts within one image. For the sensor model, we measure the standard de-
viation σl by letting a robot take multiple images of certain scenes: a ball, a
flag, a goal, a line and combinations of it. The standard deviation of distance
differences and respectively angle differences of objects in the image relative to
each other were measured as well. The robot is walking on the spot to keep the
distance within the environment constant an to get noisy sensor data as dur-
ing real robot motions. We found out that the angle errors of different percepts
within the same image are strongly correlated which can be seen in fig. 6 in case
of a ball and a flag.

3 Multi-agent Modeling

Now we want to describe a possible implementation of this approach. As the
sensor data of our Aibo ERS-7 robot are not very accurate, we have to cope
with a lot of sensor noise. Furthermore, the probabilistic distribution is not
always unimodal, e.g., in cases where the observations lead to more than one
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a) b) c)

Fig. 6. The diagrams show the measured angle error to a ball and to a flag. The ball
is located at a distance of 1.5m, the flag at 2.0m. a) flag and ball are seen in the same
image, the angle errors between both are strongly correlated; b) the ball is seen 0.03
seconds earlier than the flag, lower correlation; c) the ball is seen 0.2 seconds earlier
than the flag, almost no correlation between the angle errors.

solution for possible ball positions. This is why a simple Kalman filter would
not be sufficient [7]. We chose an implementation using a Monte-Carlo Particle
Filter because of its ability to model multimodal distributions and its robustness
to sensor noise. Other approaches as Multi Hypothesis Tracking or Grid Based
algorithms might work also [5]. As we cope with static situations this time only,
we could abstract from network communication time and the delay after which
percept relations were received.

3.1 Monte-Carlo Filter For Multi Agent Object Localization

Markov localization methods, in particular Monte-Carlo Localization (MCL),
have proven their power in numerous robot navigation tasks, e.g., in office en-
vironments [3], in the museum tour guide Minerva [13], in the highly dynamic
RoboCup environment [8], and outdoor applications in less structured environ-
ments [9]. MCL is widely used in RoboCup for object and self localization [7]
because of its ability to model arbitrary distributions and its robustness towards
noisy input data. The probability distribution is represented by a set of samples,
called particle set. Each particle represents a pose hypothesis. The current belief
of the object’s position is modeled by the particle density, i.e., by knowing the
particle distribution the robot can approximate its belief about the object state.
Thereby the belief function Bel(st) describes the probability for the object state
st at a given time t. Using the Markov assumption and Bayes law, the belief
function Bel(st) depends only on the previous belief Bel(st−1), the last robot
action ut−1 and the current observation zt:

Bel−(st) ←−
∫

p(st|st−1ut−1)︸ ︷︷ ︸
process model

Bel(st−1)dst−1 (1)
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Bel(st) ←− η p(zt|st)︸ ︷︷ ︸
sensor model

Bel−(st) (2)

whereas η is a normalizing factor. Equation (1) shows how the a priori belief
Bel− is calculated from the previous Belief Bel−(st−1). It is the belief prior
the sensor data, therefore called prediction. As our robots do not perform any
actions with the ball and as the situation is static, our propagation step becomes
very simple or can be left out. In (2) the a-priori belief is updated by sensor data
zt, therefore called update step. Our update information is information about
object relations as described in section 2.1. The data from fig. 6 can serve as a
sensor model, telling the filter how accurate the sensor data are. The particles
are distributed equally at the beginning, then the filtering process begins.

3.2 Monte-Carlo Localization, Implementation

Our hypotheses space for object localization has two dimensions for the position
q on the field. Each particle si can be described as a state vector −→s i

−→s i =
(

qi
xt

qi
yt

)
(3)

and its likelihood pi.
The likelihood of a particle pi can be calculated as the product of all likeli-

hoods of all gathered evidence [12]. From every given sensor data, e.g., a land-
mark l and a ball (with its distances and angles relative to the robot) we calculate
the resulting possible ball positions relative to the landmark l. The resulting arc
will be denoted as ξl. We showed in 2.1 that ξl has a circular form, when l is
a flag, a spiral form, when l is a goal or a set of lines, when l is an edgel. The
shortest distance δl from each particle −→s i to ξl is our argument for a Gaussian
likelihood function N (δ, μ, σ). The parameters of the Gaussian where derived
experimentally. The sensor model being assumed to be Gaussian showed to be
a good approximation in experiments. The likelihood is being calculated for all
seen landmarks l and then multiplied:

pi =
∏
l∈L′

N (δl, 0, σ) (4)

In cases without new evidence all particles get the same likelihood. After
likelihood calculation, particles are resampled.

Multi Agent Modeling. Percept relations from every robot are communicated to
every other robot. The receiving robot uses the communicated percept relations
the same way it uses its own for likelihood calculation of each particle

– By communicating percept relations rather than particles, every robot can
incorporate the communicated sensor data to calculate the likelihood of its
particle set.
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4 Experimental Results

As a test platform served the Aibo ERS-7. In the first reference algorithm, to
which we compare our approach, two robots try to localize and to model the
ball in an egocentric model. As a result each robot maintains a particle distri-
bution for possible ball positions, resulting from self localization belief and the
locally modeled ball positions. In our situation neither robot is able to accurately
determine the ball position. Then the two robots communicate their particle dis-
tribution to each other. After communication each robot creates a new particle
cloud as a combination of its own belief and the communicated belief (commu-
nicated particle distribution). We want to check how this algorithm performs in
contrast to our presented algorithm in situations, where self localization is not
possible, e.g., when every robot can only see one landmark and the ball.

In our first experiment, we placed both robots in front of different landmarks,
one in front of a goal and one in front of a line with partially overlapping fields
of view, such that both robots could see the ball (fig. 7 and 8).

The robots cannot accurately model the ball position when just communicating
particle distributions, whereas by communicating percept relations the modeled

)b)a

Fig. 7. Experiment A: views from two robots: a) robot A seeing a ball and a goal; b)
robot B seeing a ball and a line

a) b)

Fig. 8. Experiment A: the modeled ball position. a) both robots try to localize and have
an egocentric ball model. After interchanging their particle distribution, the particle
cloud does not convergence to a confined area; b) robots interchange the percept rela-
tions (ball-line and ball-goal), then updating and resampling the particle distribution.
The distribution converges quickly to two small areas.
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a) b)

Fig. 9. Experiment B: The upper robot can see the ball and a line, the lower robot can
see the flag only, because it is too far away to see the line. a) communicating particles
does not lead to a convergence of the particles; b) communicating percept relations
leads to convergence of the particle cloud to two small areas.

a) b)

Fig. 10. Entropies over time for the experiments A and B. a) Experiment A: the dotted
line represents the entropy for communicating percept relations, the continuous line
represents the particle entropy for communicating percept distributions; b) Experiment
B: dotted line represents ball particle entropy when communicating percept relations,
continuous line for communicating particle distributions.

position converges to two small areas (fig. 8). Entropy measurement shows this
quantitatively in fig. 10 a) - the entropy is much smaller, when percept relations
are communicated. In Experiment B (fig. 9) one robot sees a flag, the other robot
sees a line and both can see the ball. Again the robots try to localize and model
the ball position egocentricly. Then they transform the egocentricly modeled ball
particles into allocentric coordinates and communicate the particle distribution to
each other. Simple particle communication does not lead to a convergence of the
resulting particle distribution, whereas communicating percept relations leads to
a convergence to a confined area (fig. 9 b) ). Also entropy is much smaller again,
when communicating percept relations 10 b).

5 Conclusion

Object relations, especially line information, in robot images can be used to
localize objects in allocentric coordinates, e.g., if a ball is detected in an image
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next to a goal, the robot can infer something about where the ball is on the
field. Percept relations can also help to detect image processing errors. Without
having to be localized at all, it can accurately estimate the position of an object
within a map of its environment using nothing but object relations. Furthermore,
we were able to show how the process of object localization can be sped up by
communicating object relations to other robots. Two non-localized robots are
thus able to both localize an object using their sensory input in conjunction with
communicated object relations.

Future Work. Future work will investigate, how the presented approach can be
extended to moving objects, letting the robot infer not only about the position
but also about the speed. Another interesting question would be, how redundant
computation that is done by every agent can be distributed among the different
robots while staying robust against system failures of different robots.
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Abstract. To achieve robust color perception under varying light con-
ditions in indoor and outdoor environments, we propose a three-step
method consisting of adaptive camera parameter control, image segmen-
tation and color classification. A controller for the intrinsic camera para-
meters is used to improve color stability in the YUV space. Segmentation
is done to detect spatially coherent regions of uniform color belonging
to objects in the image. Then, a probabilistic classification method is
applied to label the colors by use of a Gaussian color distribution model.
Experiments under combination of artificial and natural illuminations
indoors and outdoors have been carried out. The results show the fea-
sibility of this approach as well as the problems that occur under these
highly diverse light situations. In particular we investigate the applica-
tion in a RoboCup soccer scenario pointing toward future outdoor use.

Keywords: Color constancy, adaptive camera parameter control, seg-
mentation, color classification, outdoor color vision.

1 Introduction

Computer vision has been for long identified to provide rich information about
the environment for mobile robots. One of the major challenges in interpreting
camera images is to cope with influences from illumination changes. In particular
color information, which humans easily can classify, may appear very differently
in the camera image. This is even more the case when the robot is supposed to
work in indoor and outdoor environments.

In the context of RoboCup several soccer leagues use color coded environ-
ments in well defined light conditions. One long-term goal of RoboCup is to
remedy these artificial regulations and cope with natural light and objects. Yet
up to now, most RoboCup teams use manually calibrated color tables and fixed
camera parameters which have to be tuned right before the games. This tedious
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procedure only works when the environment does not undergo severe changes
like direct sunlight and clouds during play.

We propose a combination of several techniques to approach this problem.
First of all we continuously control the intrinsic camera parameters aiming for
best possible color constancy. A first segmentation step based on Markov Ran-
dom Fields leads to regions of uniform colors, which are then probabilistically
classified to a set of discrete colors. Experiments convey that this method pro-
vides robust color classification under a variety of illumination conditions.

The paper is structured as follows. In chapter 2 we give an overview on re-
lated work regarding color constancy and color classification. Our approach is
described in chapter 3 including camera parameter control, color segmentation
and classification. In Chapter 4 we evaluate these steps by providing experi-
mental results. Chapter 5 concludes with a discussion of the results and future
work.

2 Related Work

A vast body of research has been done in the field of color constancy. Here the
focus traditionally lies on the identification of illumination-independent descrip-
tors for surfaces in a scene [1]. This includes the two tasks of determining the
illuminant of a scene and mapping color values to a set of descriptors. An impor-
tant instance of this general problem is the correction of colors in one image to
match another image with some other illumination [2]. The available algorithms
can be roughly divided into physics-based methods which try to model and
explain the underlying physical processes, such as the dichromatic reflectance
model, and statistics-based methods. These try to correlate distributions of col-
ors under different illuminations, usually requiring enough colors to be present in
the image. Examples are the diagonal method, gray-world methods, max-RGB
[3], gamut mapping [4] as well as machine learning methods [5]. Another op-
tion is the use of chromaticity (normalized) color spaces such as YUV or HSI,
where the brightness of each color is stored explicitly. It has been shown in [4]
that methods using only chromaticity show similar performance as in full RGB
space, but are more stable to shadows. Since the brightness also has an influence
on the color value in the image due to camera characteristics and limitations, in
our paper we go beyond those approaches by implementing an online method to
keep the brightness in the image stable.

As several authors [6] [7] [8] point out, such algorithms have to deal with very
big differences in the appereance of one color. Color regions may overlap, and
the values of a set of colors change in various and highly nonlinear ways. This is
particulary the case when the type of light changes, e.g. from natural to artificial
light.

The application of mobile robots enables the use of online methods, such as
online adaptation of camera parameters. The problem here lies in the nonlinear
control and calculation of the control error. The concrete meaning of a camera
parameter can vary much between different cameras, and is often not exactly
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specified. Even worse the relation between parameter value and effect is usually
very non-linear. One possible remedy is to apply learning methods as in [9].

One approach for determining the required control errors is the use of refer-
ence colors. For example white can be used to set the camera’s white balance
parameter. Catadioptric camera systems are used by many RoboCup teams.
Here a small colored ring can be laid around the camera objective so that it is
always visible in the image and does not hide the view of the field itself.

Another approach is the use of semantic knowledge about the environment.
This can be especially well applied in RoboCup environments due to the known
field specifications. [10] and [11] first compute the pose of the robot on the
field using mainly black-and-white information, then calculate the position of
colored objects and finally adapt to the observed colors dynamically. [12] apply
knowledge about the field and borders of objects. A comparable approach was
done by [13] to recognize roads, assuming that a road is mostly flat and the
car is driving on one. In our approach we avoid using such context information
to account for broader application scenarios. Alternatively [14] use a three-step
method to identify pixels usable as white reference; in contrast to our work they
only control the white balance parameter and require white colors to be present
in the environment.

Several papers investigate the benefits of first doing a segmentation or edge-
detection step, and then classify the colors of whole segments. [15] and [16]
use such methods with the main aims of improved color recognition and fast
processing time. In [17] it was found that among different alternatives the method
of choosing an unsure color (“maybe-color”) to fit to its surrounding ones gave
the best results.

Color classification by modeling color distributions as Gaussians was used by
[18] and [19]. [20] shows that a discrete set of illumination conditions (bright,
intermediate, dark) already improves the classification result significantly. In our
paper we give further evidence for such a differentiation, as well as highlighting
the benefits resulting from a continuous adaption.

3 Process for Robust Color Perception

The proposed method consists of the following major processing steps:

1. segment vertical lines into regions based on spatial uniformity of color
2. calculate mean color value for each segment
3. classify each segment to a set of color representatives
4. control camera parameters using reference colors

These steps will be described in more detail in the following subsections.

3.1 Image Segmentation

We adopt a boundary-based Markov Random Field method for line-based seg-
mentation of an image. Markov Random Fields have been proposed as model
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Fig. 1. Image processing steps

for the visual field in the brain. Many variations of Markov Random Field have
been developed, some of them have been already applied to the task of image
segmentation. This method provides a sophisticated way to segment an image
into spatially uniform regions. Here, we introduce the idea of the boundary-based
Markov Random Field briefly.

First, we define an energy function E(f, l|d) as follows:

E(f, l|d) =
1
2

∑
i

(fi − di)2 + λ
∑

i

(1 − li)(fi+1 − fi)2 + θ
∑

i

li (1)

where d is an intensity process vector representing the observed image line. Each
intensity value di is supposed to include some noise. f is the estimated value
vector. l is called line process. li represents the discontinuity (edge) between the
ith pixel and pixel i + 1. It is 1 if it is a boundary, and 0 otherwise.

The first term of equation 1 is for data fitting and tries to minimize the
error of estimation. The second term is for smoothness in space. While there is
no boundary specified by the line process li it tries to minimize the difference
between conjunct pixels fi and fi+1. When the line process li is 1, i.e. there is
a boundary, then no constraint between the conjunct pixels is introduced. The
third term of 1 is a constraint on the number of boundaries. This means there
should be less boundaries in the image than number of pixels.

In order to minimize the energy function (1), we use a hill-climbing method
and introduce derivatives of fi and li:

∂fi

∂t
= λ{(1 − li−1)(fi−1 − fi) + (1 − li)(fi+1 − fi)} − (fi − di) (2)

∂li
∂t

= −li + H(
λ

2
(fi+1 − fi)2 − θ) (3)
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where H(·) is a step function. Each parameter is updated with the above deriva-
tive iteratively until it reaches convergence.

After obtaining the segmentation of the image, the mean value of each segment
is calculated and used for color classification.

3.2 Color Classification

A probabilistic classification method based on Mahalanobis distances is ap-
plied to label colors. A Gaussian model of the color distribution for each color,
consisting of mean vector and covariance matrix in YUV space must be pro-
vided beforehand. The mean color value of each segment is used to calculate
the Mahalanobis distances with respect to the color distribution models. To
illustrate this, one reference color is assumed to be a distribution with mean
μ = (μy, μu, μv) and covariance matrix Σ. The Mahalanobis distance between a
color value x = (xy, xu, xv) and this distribution is defined as:

DM (x) =
√

(x − μ)T Σ−1(x − μ) (4)

Each segment is associated to the reference color with the minimal Mahalanobis
distance to the segment’s mean value, provided this is below a predefined thresh-
old. This threshold value offers a way to tune the ratio between unidentified pixels
and false positive ones.

3.3 Camera Parameter Control

To achieve color constancy under different light conditions we use a set of PID
controllers to modify relevant intrinsic camera parameters. To compensate for
intensity changes of the illumination, Gain and Iris are being controlled, using
the mean Y value of a white reference color visible in the camera image.

To account for changes of the type of illumination the two White Balance
channels are being controlled by using the mean U and V values of the white
reference color. Furthermore, an additional red reference color is used to control
Saturation in the same way using the calculated mean saturation value.

The parameters of each PID controller can be tuned by analysis of the step
response switching from dark to bright illumination, from bright to dark and
between different types of illumination.
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Fig. 2 shows a step response with optimized control parameters for the Bright-
ness controller, switching illumination from dark to bright. In this example, the
controller only operates on every fifth step.

After the PID parameter optimization, a proper desired value for each con-
troller has to be determined. This can be done by qualitative analysis of the
YUV color distribution. In a distribution optimal for color classification the col-
ors should be widely spread in the color space. On the other hand colors should
not be over-saturated, i.e. the distribution should not reach the borders of the
YUV cube. Furthermore the center of the distribution should lie in the center
of the given YUV space.

4 Experiments

To evaluate the performance of our approach, we conducted several experiments
in indoor and outdoor environments under different light conditions.

As basis for our experiments we used a VolksBot robot[21] with a catadioptric
camera system. A variant is used in the AIS/BIT RoboCup MSL team. Process-
ing was done on an onboard laptop with a Pentium M 1.8 GHz processor. The
complete vision processing takes less then 20 ms for one image, depending on
the number and sizes of recognized color regions. Thus the algorithm works in
real-time.

The vision system consists of a Sony DSW 500 camera looking into a hyper-
bolic mirror, thus producing 360 degree panoramic YUV images. A ring of white
and red paper is fixed around the camera lens, see Fig. 1 left. This ring provides

(a) indirect
sun light

(b) artificial
light

(c) sunshine (d) shadow

Fig. 3. Captured panoramic images with PID controller under four light conditions
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the reference colors used by the camera parameter controller without interfering
with the view of the scene itself.

The colored objects used for color classification are mainly taken from the
RoboCup scenario, in particular blue and yellow goals, a green field with white
lines, cyan and magenta markers, a red ball and black robots. For outdoor tests
we used a subset of these.

To account for a broad range of light conditions, we regard the following
situations:

1. Indoor: only artificial light of one light source (630 Lux)
2. Indoor: mixed artificial and indirect sun light (1370 Lux)
3. Indoor: only indirect sun light (500 Lux)
4. Outdoor: camera and objects in direct sun light (97,000 Lux)
5. Outdoor: camera and objects in shadow (2,550 Lux)

Fig. 3 shows the camera images under these different light conditions.

4.1 Color Constancy

Fig. 4 shows the merged distributions of YUV values obtained from the color
objects under the three indoor light conditions. The upper left image shows the
3D-view and the upper right image shows the 2D-projection on the UV-plane
using PID control of the camera parameters. The lower left and right images
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Table 1. Means μy,u,v and standard deviations σy,u,v of typical colors in YUV space
under various light condition in indoor/outdoor environment

Indoor Outdoor

PID No PID Embedded PID

red μ 127.9 216.8 69.0 133.2 179.6 87.9 162.2 194.1 81.1 134.9 213.6 60.6
red σ 15.6 8.9 4.6 44.6 53.2 33.2 17.7 12.6 10.8 8.8 6.3 10.1

yellow μ 187.0 140.0 44.0 206.7 118.4 81.6 219.1 148.9 51.9 189.5 163.5 24.1
yellow σ 26.0 5.2 9.8 34.8 21.3 34.1 20.5 10.1 30.9 16.3 7.3 11.5

blue μ 63.1 89.2 172.1 98.6 64.3 191.6 101.4 89.8 192.0 83.2 84.1 186.1
blue σ 24.1 5.2 9.8 43.8 26.8 23.1 32.2 8.7 14.0 22.8 21.6 23.8

illustrate the distributions with fixed camera parameters and embedded camera
control in the UV-plane respectively.

It is shown how the color drift is greatly reduced when applying the PID
controller, while the colors drift heavily for the other two approaches. Not using
PID control, the drift can be so big that the color distributions overlap, making
it impossible to deduce from one YUV value a unique color class.

It should be noted that also with the PID control the colors significantly drift
depending on changes of direction of illumination, changes of intensity, changes
of the ratio of different kinds of illumination or reflections. Still, the PID control
provides better stability and spreading of the distributions compared to the other
approaches evaluated. The system provides highest color constancy, when both,
the object and the reference colors rings are exposed to equal light conditions.

The biggest change in color value occurs without any parameter control. It
is interesting that not only the brightness Y, but also U and V change when
illumination intensity decreases. This indicates that a simple brightness normal-
ization is not enough to identify colors robustly, giving reason to also control the
saturation value of the camera.

Table 1 lists mean values and standard deviations for three object colors under
diverse light conditions with different control methods for the indoor and outdoor
experiments. The table only shows the standard deviation in the direction of Y,
U and V axes. Comparing the standard deviations of the different approaches
for a certain color, like e.g. red, the lower drift of the PID control method can be
confirmed. It is apparent that the standard deviation with PID control is nearly
always smaller than for the others.

The conditions change drastically when going from indoor to natural light
conditions outdoors. The image in Fig. 5 shows the YUV distributions of the
object colors and their projection into the UV-plane for the outdoor experiment
in direct sunshine and shadow. The reason for the observable higher color drift
lies in the fact of having a huge intensity range from 2550 to 97,000 Lux between
shadow and direct sunlight.

Especially in the experiment undertaken in direct sunlight these extreme illu-
mination ranges occur in a single scene, having the same objects partly exposed
to direct sunshine and partly lying in its own shadow. Furthermore, the drift in
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Fig. 5. YUV color distributions in outdoor environment

color space is highly depending on the pose of the objects relative to the light
source and to the camera. Also surface properties of the objects have a bigger
influence here. Related to this huge illumination range, one can also see the need
for the saturation control, as saturation of an object color decreases for dark and
bright situations significantly.

The red color for example has a much lower saturation V value when the
camera is outdoors. We assume that not the kind of illumination, but the high
intensity and the limited color range of the camera sensor is responsible for this
effect. The color is much brighter outdoors; since the YUV space is of conical
shape, this results in a lower range of possible saturation values.

Still, the color distributions do not overlap, which indicates that a proper
classification of colors should be possible. This will be evaluated in the next
section.

4.2 Classification Results

First we have a look at the mean values and standard deviations of the reference
color distributions, since these form the basis for the color classification step. In
Fig. 4 upper right and Fig. 5 right, these regions are drawn as ellipses around
the distribution of the respective colors. The images show the projection of
the 3-dimensional ellipsoids on the UV-plane. The drawn ellipses represent the
borders of 2-σ, 3-σ and 4-σ areas. Since the ellipsoids differ in the Y-values they
cover, they do actually not overlap in the way the image of their projections may
suggest.

The drawing of the ellipsoids indicates what threshold to use to retrieve a
binary classification result. Since the majority of already measured color pixels
should be included, at least 3 σ seems reasonable. For a more robust identification
towards unexpected light variations a higher value could be useful. But as this
can result in more false positive classifications, a compromise must be found.
For our classification experiments we chose a threshold of 3 σ.

Fig. 6 shows the classification results in multiple light conditions. In gen-
eral for all situations the classification algorithm shows a good performance. In
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(a) indirect
sun light

(b) artificial
light

(c) sunshine (d) shadow

Fig. 6. Classification results with PID controller in indoor and outdoor environments

the indoor environment all objects are recognized with their correct colors, and
only very few false positive classifications exist. In the outdoor environment the
method has problems with very dark pixels resulting from the high differences
in intensities due to sunlight and shadow.

5 Conclusion

We have presented a robust color perception method including PID controller
of camera parameters, segmentation by Markov Random Field, and classifica-
tion based on Mahalanobis distance. The PID controller provided enough color
constancy to be able to fuse the distribution under different light conditions and
to generate reference color models for indoor and outdoor. These reference color
models have shown to provide a robust basis for color classification under a variety
of different light conditions. The big difference of color distribution in indoor and
outdoor suggest the use of separate reference models for these two cases.

The vast illumination range occurring outdoors within one image has shown
the physical limitations of the camera. Future work will investigate possible
use of attention based mechanisms to choose from different parameter sets for
different light situations.
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Abstract. This paper presents a robust tracking system for autonomous
robots equipped with omnidirectional cameras. The proposed method
uses a 3D shape and color-based object model. This allows to tackle dif-
ficulties that arise when the tracked object is placed above the ground
plane floor. Tracking under these conditions has two major difficulties:
first, observation with omnidirectional sensors largely deforms the tar-
get’s shape; second, the object of interest embedded in a dynamic sce-
nario may suffer from occlusion, overlap and ambiguities. To surmount
these difficulties, we use a 3D particle filter to represent the target’s state
space: position and velocity with respect to the robot. To compute the
likelihood of each particle the following features are taken into account:
i) image color; ii) mismatch between target’s color and background color.
We test the accuracy of the algorithm in a RoboCup Middle Size League
scenario, both with static and moving targets.

1 Introduction

In order to carry out complex tasks (e.g. playing football) robots need to extract
sufficient information from the environment they operate in. Catadioptric sensors
are widely used in robotics, especially for self localization and navigation [8],[1],
as they gather information from a large portion of the space surrounding a robot.
One drawback is that images are affected by strong distortion and perspective
effects, which may force the use of non-standard algorithms for target detection
and tracking.

Automated tracking is still an open problem, e.g., surveillance applications [2],
sports [5,10] or smart rooms [6]. In general, tracking visual features in complex
and cluttered environments is fraught with uncertainty. It is therefore crucial to
adopt principled probabilistic models. Over the past few years, particle filters,
also known as sequential Monte Carlo (MC), proved to be effective in image
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processing tracking techniques, e.g., [11,12,13]. The strength of these methods
lies in their simplicity and flexibility on nonlinear and non-Gaussian settings [7].

We use a 3D particle-filter [9,11] tracker in which the hypotheses are 3D
positions and velocities of the object, and whose likelihood is a function of object
color and shape. From one image frame to the next, the hypotheses are moved
according to an appropriate motion model. Then, for each particle, a likelihood
is computed, in order to estimate the object state. To calculate the likelihood of
a particle we first project the contour of the object it represents on the image
plane (as a function of the object 3D shape, position and orientation) using an
approximated model for the catadioptric system, the Unified Projection Model
[15]. The likelihood is then calculated as a function of three color histograms:
one represents the object color model and is computed in a training phase with
several examples taken from distinct locations and illumination conditions; the
other two histograms represent the inner and outer boundaries of the projected
contour, and are computed at every frame for all particles. The idea is to assign
a high likelihood to the contours for which the inner pixels have a color similar
to the object, and are sufficiently distinct from outside ones.

A work closely related to this is described in [14], although in that case
the tracking of RoboCup Middle Size League (MSL) balls is accomplished on
the image plane. Tracking the 3D trajectory of a ball has become relevant in the
RoboCup MSL scenario, as robots are now provided with the ability to kick the
ball off the ground. Tracking the position of an object in 3D space instead of
on the image plane has two main advantages: (i) the motion model used by the
tracker can be the actual motion model of the object, while in image tracking
the motion model should describe movements of the projection of the object on
the image plane and, because of the aforementioned distortion, a good model
can be difficult to formulate and use; (ii) with 3D tracking the actual position of
the tracked object is directly available, while a further non-trivial step is needed
for a system based on an image tracker to provide it.

The paper is organized as follows. In Section 2 we describe the catadioptric
sensor and the used projection model. The particle filter is described in Section 3,
and customized to our particular problem in 4. The experimental results are
shown in Section 5 and, finally, Section 6 concludes the paper and presents ideas
for future work.

2 Catadioptric Imaging System

In this section we describe the imaging system, its projection model and the
used calibration method. Our catadioptric vision system, see Fig.1a, combines
a camera looking upright to a convex mirror, having omnidirectional view in
the azimuth direction [16]. The system is designed to have a wide-angle and
a constant-resolution view of the ground plane [17,18]. The system has the
constant-resolution property at one reference plane, the ground plane, and has
only approximately constant-resolution at planes parallel to the reference one.
As compared to perspective cameras, the constant-resolution design is a good
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compromise between approximating ubiquitous constant-resolution and enlarg-
ing the field of view. Note that perspective cameras can have constant-resolution
for all planes orthogonal to the optical axis only for narrow view fields. Large
fields-of-view imply using small focal length lenses which introduce large radial
distortions.

Let the projection model, P of the constant-resolution system represent the
transformation of a 3D point, [X Y Z]T into the 2D coordinates of its projection
on the image plane, [u v]T , considering the parameters θ:

[u v]T = P
(
[X Y Z]T ; θ

)
. (1)

P is trivial for the ground-plane, as it is just a scale factor between pixels and
meters. Deriving P for the complete 3D field of view is complex as it involves
using the actual mirror shape [18]. Here we assume that the system approximates
a single projection center system, considering that the mirror size is small when
compared to the distances to the imaged-objects. Hence, we can use a standard
model for catadioptric omnidirectional cameras, namely the Unified Projection
Model (UPM) pioneered by Geyer and Daniilidis [15].

The UPM represents all omnidirectional cameras with a single center of pro-
jection [15]. It is simpler than the model which takes into account the actual
shape of the mirror and gives good enough approximations for our purposes.

(a) (b) (c)

(d) (e) (f)

Fig. 1. (a) Catadioptric camera. (b) The Unified Projection Model. (c) Calibration
result: observed image points (crosses), 3D points projected using initial projection
parameters (dark gray circles) and using calibrated parameters (light gray circles) -
the arrows show the calibration effect at four points. (d) The OmniISocRob robotic
platform. (e) Image used for calibration. (f) Sample image taken in a RoboCup MSL
scenario.



80 M. Taiana et al.

The model consists of a two-step mapping via a unit-radius sphere: (i) project a
3D world point, P = [x y z]T to a point Ps on the sphere surface, such that the
projection is normal to the sphere surface; (ii) project to a point on the image
plane, Pi = [u v]T from a point, O on the vertical axis of the sphere, through
the point Ps. This mapping is graphically illustrated in Fig.1b. The mapping is
mathematically defined by:[

u
v

]
=

l + m

l
√

x2 + y2 + z2 − z

[
su 0
0 sv

] [
x
y

]
+
[

u0

v0

]
(2)

where (l, m) parameters describe the type of camera, (su, sv, u0, v0) represent
pixel scaling and offsetting in the image plane, and [x y z]T is a 3D point in the
camera coordinate system, whose relationship to world coordinates is given by
the 3D rigid transformation, [x y z]T = R[X Y Z]T + [x0 y0 z0]T .

To calibrate the model we use a set of known non-coplanar 3Dpoints [Xi Yi Zi]T

and measure their images [ui vi]T . Then, we minimize the mean squared error
between the measurements and the projection with the parametric model P :

θ∗ = argθ min
∑

i

∥∥[ui vi]T − P
(
[Xi Yi Zi]T ; θ

)∥∥2 (3)

where θ contains the 3D rigid transformation from world to camera coordinates,
pixels scaling and offsetting, and the camera type parameters (l, m). We set the
calibration patterns coordinate system in accordance with the robot frame by
aligning the patterns with the center of the robot, see Fig.1e.

3 3D Tracking with Particle Filters

In this section we introduce the methods employed for 3D target tracking with
particle filters. We are interested in computing, at each time t ∈ N, an estimate
of the 3D pose of a target. We represent this information as a “state-vector”
defined by a random variable xt ∈ Rnx whose distribution in unknown (non-
Gaussian); nx is the dimension of the state vector. In the present work we are
mostly interested in tracking balls and cylindrical robots, whose orientation is
not important for tracking. However, the formulation is general and can easily
incorporate other dimensions in the state-vector, e.g. target orientation and spin.

Let xt = [x, y, z, ẋ, ẏ, ż]T , with (x,y,z), (ẋ,ẏ,ż) the 3D cartesian position
and linear velocities in a robot centered coordinate system. The state sequence
{xt; t ∈ N} represents the state evolution along time and is assumed to be an
unobserved Markov process with some initial distribution p(x0) and a transition
distribution p(xt | xt−1).

The observations taken from the images are represented by the random vari-
able {yt; t ∈ N}, yt ∈ R

ny , and are assumed to be conditionally independent
given the process {xt; t ∈ N} with marginal distribution p(yt | xt), where ny is
the dimension of the observation vector.



3D Tracking by Catadioptric Vision Based on Particle Filters 81

In a statistical setting, the problem is posed as the estimation of the posteriori
distribution of the state given all observations p(xt | y1:t). Under the Markov
assumption, we have:

p(xt | y1:t) ∝ p(yt | xt)
∫

p(xt | xt−1) p(xt−1 | y1:t−1)dxt−1 (4)

The previous expression tells us that the posteriori distribution can be computed
recursively, using the previous estimate, p(xt−1 | y1:t−1), the motion-model,
p(xt | xt−1) and the observation model, p(yt | xt).

To address this problem we use particle filtering methods. Particle filtering is
a Bayesian method in which the probability distribution of an unknown state is
represented by a set of M weighted particles {x(i)

t , w
(i)
t }M

i=1 [11]:

p(xt | y1:t) ≈
M∑
i=1

w
(i)
t δ(xt − x(i)

t ) (5)

where δ(·) is the dirac delta function. Based on the discrete approximation of
p(xt | y1:t), different estimates of the best state at time t are possible to be
devised. For instance we may use the Monte Carlo approximation of the expec-
tation, x̂ .= 1

M

∑M
i=1 w

(i)
t x(i)

t ≈ E(xt | y1:t), or the maximum likelihood estimate,
x̂ML

.= argmaxxt

∑M
i=1 w

(i)
t δ(xt − x(i)

t ).
To compute the approximation to the posteriori distribution, a typical tracking

algorithm works cyclically in three stages:

1. Prediction - computes an approximation of p(xt | y1:t−1) , by moving each
particle according to the motion model;

2. Update - each particle’s weight i is updated using its likelihood p(yt | x
(i)
t ):

w
(i)
t ∝ w

(i)
t−1p(yt | x

(i)
t ) (6)

3. Resampling - the particles with a high weight are replicated and the ones
with a low weight are forgotten.

For this purpose, we need to model probabilistically both the motion dynam-
ics, p(xt | xt−1), and the computation of each particle’s likelihood p(yt | x

(i)
t ).

3.1 The Motion Dynamics

In the system proposed herein we assume motion dynamics follow a standard
autoregressive dynamic model:

xt = Axt−1 + wt, (7)

where wt ∼ N (0, Q). The matrices A, Q, could be learned from a set of repre-
sentative correct tracks, obtained previously (e.g., see [3]), however, we choose
pre-defined values for these two matrices (see Sections 4 and 5). Since the coor-
dinates in the model are real-world coordinates, the motion model for a tracked
object can be chosen in a principled way, both by using realistic models (con-
stant velocity, constant acceleration, etc.) and by defining the covariance of the
noise terms in intuitive metric units.
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3.2 Observation Model

Each state vector xt represents a target pose hypothesis. According to target
shape, we compute sets of N points in the 3D inner and outer object boundaries:
{Dn

in} and {Dn
out}, n = 1 · · ·N . These points must be carefully chosen so that

their projection in the image plane, using the projection model of section 2, falls
in the 2D inside and outside boundaries of the image contour. Then, we obtain
sets of 2D points {dn

in} and {dn
out}. Each point d in the image is represented

by its color vector in the HSI representation. For the inner and outer boundary
point sets, we will compute HSI histograms, with B = Bh Bs Bi bins.

Let us denote bt(d) ∈ {1, . . . , B} the bin index associated with the color vector
at pixel location d and frame t. Then the histogram of the color distribution of
a generic set of points can be computed by a kernel density estimate H .=
{h(b)}b=1,...,B of the color distribution at frame t, where each histogram bin is
given as in [4]

h(b) = β
∑

n

δ[bt(dn) − b] (8)

where δ is the Kronecker delta function, β is a normalization constant which
ensures h to be a probability distribution

∑B
b=1 h(b) = 1.

To compute the similarity between two histograms we apply the Bhattacharyya
similarity metric, as in [13]:

S
(
H1,H2

)
=

B∑
b=1

√
h1(b) · h2(b) (9)

The likelihood of the hypothesis is computed, as a function of two similarities:
the similarity between the object color model and the color measured in the
inside image boundary, and the similarity between the colors measured in the
image inside and outside the contour.

Defining a reference color model for the object as Hmodel, Hinner as the inner
boundary points color histogram, and Houter the outer boundary histogram,
we will measure their similarity, using (9). The data likelihood should favor
candidate color histograms which are close to the reference histogram and are
sufficiently distinct from the background. Therefore we use:

p(yt | x
(i)
t ) = pos

[
S(Hmodel,Hinner) − kS(Houter,Hinner)

]
(10)

where the pos(·) function truncates to zero the negative values. This allow us
to cope with the detection of the object (first term) and the detection from the
background (second term).

4 Implementation of the RoboCup MSL 3D Tracker

The present approach is tested for a ball and robot tracking task, in a typical
RoboCup MSL environment. The color model for each object was built collecting
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a set of images in which the object is present, and calculating the HSI color
histogram on the (hand labeled) pixels belonging to the specific object. For
target dynamics, we have chosen a constant velocity model, in which the motion
equations correspond to a uniform acceleration during one sample time:

xt = Axt−1 + Bat−1, A =
[
I (Δt)I
0 I

]
, B =

[
(Δt2

2 )I
(Δt)I

]
(11)

where I is the 3 × 3 identity matrix and at is a 3 × 1 white zero mean random
vector corresponding to an acceleration disturbance. We have set Δt = 1 for
all the experiments, whereas the covariance matrix of the random acceleration
vector was fixed at:

cov(at) = σ2I, σ = 90mm/frame2 (12)

The observation model requires the definition of adequate points in the 3D
object inner and outer boundaries, as described in Section 3.2. Our idea was
to determine which points of the 3D model would be projected on the object’s
contour on the image (see Fig.2) and then create the two sets of 2D boundary
points by projecting the selected 3D points for a smaller and a larger model
of the object (see the close-up’s in Figures 3 and 5: the projected contours are
drawn in white, while internal and external points are drawn in black). For the
ball, for instance, the 3D contour points lie on the intersection between the
sphere modelling it and the plane orthogonal to the line which passes through
the virtual projection center and the center of the sphere. With this model, it
is possible to adjust the number of points describing the 2D contour, obtaining
faster processing times (less points) or more robustness (more points).

(a) (b)

Fig. 2. 3D plot of the 3D points projected to obtain the 2D contour points for balls
(a) and robots (b), at different positions

5 Experimental Results

We ran several experiments to assess the accuracy and precision of the proposed
tracking method: we tracked a ball rolling down a ramp, a ball bouncing on the
floor and a robot maneuvering. We furthermore ran an experiment placing a still
ball at different positions around the robot and measuring the error with respect
to the ground truth.
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5.1 Ball Tracking – Ramp and Bouncing

In the first experiment we tracked a ball rolling down a two-rail ramp. The
projection of the ball on the image plane changes dramatically in size after some
frames (see Fig.3a), due to the nature of the catadioptric system used. The
images are affected by both motion blur and heavy sensor noise (see Fig.3b).

This image sequence was acquired with a frame rate of 20fps and we used
10000 particles in the tracker. The initial position for the particles was obtained
sampling a 3D Normal distribution, the mean and standard deviation of which
were manually set. The initial velocitiy was also manually set, equal for every
particle. To sample the pixels in order to build the inner and outer color his-
tograms for each hypothesis we projected a sphere with respectively 0.9 and 1.1
the radius of the actual ball. For each projection we used 50 points, uniformly dis-
tributed on each 3D contour. The parameter k was set to 1.5 for all experiments,
meaning that we wanted the difference between inner color and outer color to
be more discriminative than the similarity between inner color and model color.
We repeated the tracking 10 times on the same image sequence.

The results of the tracking are visible in Fig. 4a.

(a) (b)

Fig. 3. Ball rolling down a ramp. (a) frames 1, 11 and 21 of the sequence and three
corresponding close-ups of the tracked ball with the contour of the best hypothesis
drawn in white (bottom row). The pixels marked in black are the ones used to build
the color histograms. (b) Close-ups of the ball showing motion blur and noise.

In the second experiment we tracked a ball bouncing on the floor. The experi-
mental setting was exactly the same as for the first experiment described, but for
the frame rate, which in this case was of 25fps. The image sequence begins with
the ball about to hit an obstacle on the ground, while moving horizontally. The
collision triggers a series of parabolic movements for the ball, which is tracked
until it hits the ground for the fourth time. We repeated the tracking process
ten times on the same image sequence. The results are visible in Fig. 4b.



3D Tracking by Catadioptric Vision Based on Particle Filters 85

(a) (b)

Fig. 4. (a) Ball rolling down the ramp: plot of the tracked paths resulting from 10 runs
of the algorithm performed on the same image sequence. The 10 dotted liness represent
the 10 3D estimated trajectories of the ball, the 20 solid lines are the projection of these
trajectories on the ground and lateral plane. (b) Ball jumping: same kind of plot for
the estimated trajectories of the ball in the jump image sequence.

5.2 Robot Tracking

In this experiment we tracked a robot moving along a straight line, turning by
90 degrees and continuing its motion along the new direction (Fig. 5a). In this
experiment the setting differs from the previous two: the vertical position and
speed of the tracked object were constrained to be null. The injected velocity
noise was, thereafter, distributed as a 2D Normal. To sample the pixels in order
to build the inner and outer color histogram for each hypothesis we projected
the contour of an 8-sided-prism with respectively 0.75 and 1.25 the size of the
actual robot. The size difference between the projected models and the actual
one is greater than in the case of the ball due to the fact that the model for the
robot does not exactly fit its actual shape. For each projection, 120 points were
used. We repeated the tracking 10 times and results are shown in Fig. 5b.

5.3 Error Evaluation

In this experiment we placed a ball at various positions around a robot and
confronted the positions measured with our system against the ground truth.
The positions were either in front of the robot, on its right, on its left or behind
it, and either on the floor or at a height of 340mm.

Both the ground truth and the estimated ball positions are shown in Figure 6.
It is noticeable some bias mainly in the vertical direction, due to miscalibration of
the experimental setup. However, we are mostly interested in evaluating errors
arising in the measurement process. Distance to the camera is an important
parameter in this case, because target size varies significantly. Therefore, we
have performed a more thorough error analysis evaluating its characteristics as
a function of distance to the camera.

In Figure 7, we plot the measured error in spherical coordinates (ρ–distance,
φ–elevation, θ–azimuth), as a function of distance to camera’s virtual projection
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(a) (b)

Fig. 5. Robot tracking. (a) three different frames of the sequence (top) and three close-
ups of the tracked robot with the contour of the best hypothesis (white) and regions
used to build the color histograms (black) drawn (bottom). (b) reconstructed robot
trajectory - a view from the top of 10 estimated trajectories.

center. The first plot shows that radial error characteristics are mostly constant
along distance, with a systematic error (bias) of about 46mm, and standard
deviation of about 52mm. This last value is the one we should retain for char-
acterizing the precision of the measurement process. The second plot shows the
elevation error, where it is evident a distance dependent systematic error. This
has its source on a bad approximation of the projection model for distances
close to the cameras. Finally, the third plot shows the azimuthal error. It can
be observed that there is a larger random error component at distances close to
the camera, but this just a consequence of the fact that equal position errors at
closer distances produce larger angular errors. Therefore we conclude that the
precision of the observation model is in average of 52mm and do not depend
significantly on distance to the camera in the tested range.

(a) (b)

Fig. 6. Two views of ground truth (dots) and measurements (crosses)
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Fig. 7. ρ, φ, θ error for balls laying on the ground (dots) and flying at 340mm (crosses)

6 Conclusions

In this paper we have presented a tracking system for MSL Robots equipped
with omnidirectional cameras, capable of tracking both targets on or above the
floor, to consider the possibility of flying balls. The tracker uses a 3D shape and
color model of the targets, and uses particle filtering methods to estimate their
3D location with respect to the Robot. Each hypothesis in the filter represents
the 3D pose of an object. Even though in this paper we only consider targets
with simple shapes (spheres and cylinders for representing balls and robots), the
proposed model is general and copes with arbitrary shapes.

The main advantage of our approach is the use of a full 3D model in which
the targets’ motion dynamics is naturally expressed. Previous image based (2D)
tracking methods require non-linear motion models (image projection is often
non-linear) or must rely on approximations. This non-linearity becomes even
more drastic in the case of omnicamera systems when targets are not lying on
the floor. An additional advantage of the proposed method is related to a direct
computation of 3D pose, whereas 2D models compute an image based pose that
still must be mapped to world coordinates.

We have performed extensive experiments with real robots in a RoboCup MSL
scenario. This paper showed the performance of our method in tracking maneu-
vering robots, rolling and jumping balls, demonstrating its ability to deal with
off-the-floor targets and sudden trajectory changes. Additionally, we evaluated
the precision of the system in static scenarios with ground truth measurements.

Since it is becoming more frequent to have robots kicking balls off the floor,
the presented method constitutes a solution to improve ball position estimation,
which, in the case of the goal-keeper, may be of fundamental importance.
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14. Olufs, S., Adolf, F., Hartanto, R., Plöger, P.: Towards probabilistic shape vision in
robocup: A practical approach. In: RoboCup International Symposium (2006)

15. Geyer, C., Daniilidis, K.: A unifying theory for central panoramic systems and
practical applications. In: Vernon, D. (ed.) ECCV 2000, Part II. LNCS, vol. 1843,
pp. 445–461. Springer, Heidelberg (2000)

16. Benosman, R., Kang, S.B. (eds.): Panoramic Vision. Springer, Heidelberg (2001)
17. Hicks, R., Bajcsy, R.: Catadioptric sensors that approximate wide-angle perspective

projections. In: CVPR, pp. 545–551 (2000)
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Abstract. Robots perceiving their environment using cameras usually
need a good representation of how the camera is aligned to the body and
how the camera is rotated relative to the ground. This is especially im-
portant for bearing-based distance measurements. In this paper we show
how to use reference objects to improve vision-based distance measure-
ments to objects of unknown size. Several methods for different kinds of
reference objects are introduced. These are objects of known size (like a
ball), objects extending over the horizon (like goals and beacons), and
objects with known shape on the ground (like field lines). We give a de-
tailed description how to determine the rotation of the robot’s camera
relative to the ground, provide an error-estimation for all methods and
describe the experiments we performed on an Aibo robot.

Keywords: RoboCup, humanoid robots, Aibo, camera matrix, refer-
ence objects.

1 Introduction

A main task in robotic vision is to determine the spatial relations between the
robot and the objects that surround it. Usually the robot needs to know the an-
gle and the distance to certain objects in order to localize, navigate or do some
high-level planning. To determine the distance to an object is easy when the size
of the object and the focal length of the camera are known. To determine the
distance to an object of unknown size is possible using the knowledge about the
height of the camera and the bearing to the point where the object meets
the ground. This bearing is given by the position of the object in the image
and the known orientation of the camera relative to the ground. Unfortunately
this orientation is not known in a lot of cases. The calculation of the kinematic
chain of a legged robot from the ground to the camera is usually difficult as
the exact contact points of the robot and the ground are hard to determine.
Additionally inaccuracies in the joint angle sensors sum up the longer the kine-
matic chain is. But also for wheeled robots the orientation of the camera relative
to the ground can be unknown, especially when there is a suspension for the
wheels. In this paper we show how to determine the orientation of the camera

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 89–100, 2008.
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90 M. Jüngel, H. Mellmann, and M. Spranger

using reference objects in the image and how to calculate the distance to objects
of unknown size. This work was inspired by our experience in RoboCup where
using the field lines to localize a Sony Aibo was inaccurate due to large errors
in the orientation and position of the camera which are calculated based on the
sensor readings of the joint angles of the robot and assumptions on the contact
points of the legs with the ground.

1.1 Related Work

There has been extensive work on the calibration of camera parameters. Typ-
ically authors try to infer intrinisic and extrinsic parameters of cameras using
specially crafted calibration objects. A lot of work has been put in to reduce the
complexity of this objects, i.e. their dimensionality or rigidness of pattern [1,2] or
even allow completely other objects for the parameter estimation [3]. RoboCup
teams have developed mechanisms to reduce the calibration time after transport
of robots [4] or to calibrate ceiling cameras [5]. A lot of these methods involve
off-line optimization of the estimated parameters regarding projection errors. In
contrast to these methods our approach focuses on determining the camera pose
relative to the ground during the operation of the robot. While intrinsic param-
eters do not change during operation, the extrinsic parameters of the camera are
usually hard to determine using proprioception in a highly dynamic environment
like RoboCup. We describe how information from the camera images can be used
to determine the orientation of the camera and how additional information from
the joint sensors can be incorporated.

1.2 Outline

This paper is divided into several parts. In section 2 we motivate our work by giv-
ing an error estimation for the bearing based distance measurement approach. In
section 3 we describe several methods that determine the camera matrix by means
of visual information in order to determine distances to other objects. In section 4
we examine the robustness of these methods concerning errors. Section 5 presents
the results of some experiments which were conducted with an AIBO.

2 Motivation

A simplified version of the bearing based distance estimation approach of ob-
jects can be seen in figure 1. The model was used to estimate the significance
of any correction approach in advance. From this simple mathematical model
conclusions about the influence of measurement errors of the rotation angle ϕ
and the estimated height hcamera on the calculated distance dobject were drawn.

The basic bearing based distance approach depicted in figure 1 calculates
dobject from known hcamera, hobject and ϕ. From

d = tan (ϕ) · hcamera and drest = tan (ϕ) · hobject
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hcamera

dobject
d

hobject

drest

Fig. 1. Simple bearing based distance estimation model

follows with dobject = d − drest that

dobject = tan (ϕ) · (hcamera − hobject)

With known hcamera and hobject, dobject can be seen as a function depending
on ϕ only, i.e. dobject = dobject(ϕ). It can be immediately seen that it is also pos-
sible to infer the correct bearing ϕ from known hcamera, hobject and dobject. This
simple model is only valid when hcamera > hobject and ϕ < π

2 . It allows to show
the effect of estimation errors of ϕ on the estimated distance dobject of an object
of height hobject. For an ex ante study suitable values for hcamera and hobject

where chosen from the context of RoboCup. The error derror is calculated by

derror(Δϕ) = |dobject(ϕ + Δϕ) − dobject(ϕ)|

From the formulas provided it can be seen that even small changes of ϕ can
result in big errors for the estimated distance dobject, which is shown in figure 2a)
for fixed hcamera and hobject. For positive Δϕ the error is rising exponentially.
Figure 2b) illustrates that this error rises with the growing correct distance of
the object.

3 Using Reference Objects for Improving Distance
Measurements

A lot of objects in the environment of a robot can be used as reference objects
for distance calculation. In this paper we focus on the calculation of distances
based on the height of the observing camera and its direction of view. As shown
in section 2 this method is very prone to errors in the angle between the optical
axis of the camera and the ground. We show several methods to estimate the
position and orientation of the camera relative to the ground using different
classes of objects:

– objects with known size (e.g. the ball)
– objects with known height, higher than the camera of the robot (e.g goals

and beacons)
– objects with known outline on the ground (e.g. goals and field lines)
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Fig. 2. Bearing based distance estimation error for fixed hcamera = 160mm (which is a
suitable camera height approximation for the Sony Aibo Robot) and an object height
hobject = 90mm(height of the RoboCup ball in the 4-legged-league) a) Shows the effect
of variations of ϕ (calculated from correct distance of dobject = 1000mm). Please note
that the error gets as big as 7000mm for a variation of ϕ by 4degrees. b) Shows the
same effect as a) in a range for the object distance dobject from 1000mm to 1200mm.
For bigger distances the error rises dramatically.

d

h qh

Fig. 3. Relation between the tilt of the camera and the ball used as reference object

All examples given in brackets are usually to be seen during a typical RoboCup
game. Thus in almost every image at least one reference object can be used. The
following subsections describe the different methods for all classes of reference
objects. Given that the camera is not rotated on the optical axis we can limit our
following considerations to a two-dimensional model, as shown in figure 3 (left).

3.1 Objects of Known Size

An easy approach in order to determine the camera tilt is to consider reference
objects, whose distance can be determined based on their size. If the distance to
a point is given, the tilt can be calculated as follows:

β = arccos
( q

h

)
− α.

This formula can be deduced from figure 3 (left).
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Figure 3 (right) illustrates the relation between the camera tilt and the ball
as reference object1. Here, two simple formulas can be deduced as follows:

ρ

q
= sin (α) and

h − ρ

q
= cos (β − γ)

it can be deduced:

β = arccos
(

h − ρ

ρ
· sin (α)

)
+ γ.

This formula allows us to calculate the camera tilt using only the size of the ball
without the need of any other sensor information.

3.2 Objects with Known Shape on Ground

If the height and the tilt of the camera are known, the image captured by the
camera can be projected to the ground. If the used camera tilt corresponds
with the real tilt, the outline of ground-based objects should appear without
distortion in this projection. Should there be distortions (e.g. there is not a right
angle between the field lines), this is a hint on the fact that the used tilt is
incorrect. Thus it is an obvious idea to determine the camera tilt so that the
projected field lines are perpendicular to each other.

This idea can be formulated as follows. Let p1, p2 and p3 be the defining points
of a corner in the image, p1 being the vertex. The points are projected to the
ground plane by means of the camera matrix M(α), α being the camera tilt. The
resulting points are denoted Pi(α). For the angle ϕ, which is defined by these
points, it holds:

cosϕ =
〈P1(α) − P2(α), P1(α) − P3(α)〉

||P1(α) − P2(α)|| · ||P1(α) − P3(α)|| .

However, it is known that ϕ = π
2 and hence cosϕ = 0, so that the formula for α

is the following:
〈P1(α) − P2(α), P1(α) − P3(α)〉 = 0.

In general, this equation has an infinite number of solutions. However, in specific
cases, as e.g. in the case of AIBO, there is often only one admissible solution due
to the limits of the joints. By means of standard methods as Gradient Descent,
this solution can be easily found.

This method works best if the corner is viewed on from the outside or the
inside. However, if the robot is situated on one of the defining lines, the angle is
not distorted by the wrong camera tilt any more and the method fails.

3.3 Tilt Correction Using Objects Higher than Eye-Level

The examination of the horizon yields another approach for the correction of the
camera matrix. In many cases the horizon can be measured by means of objects
1 The advantage of taking the ball as reference object is that it is easy to determine

its size, as the ball looks equal from every direction. Furthermore, it can be seen on
numerous images, being the central object of the game.
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h

hR
} hI

Fig. 4. (left) A landmark is projected on the image plane. The knowledge of the real
height of landmark can be used to determine the height of the horizon in the im-
age. (right) An image captured by the robot, containing the recognized goal and the
calculated horizon.

that are higher than the focal point of the camera. For example, if the robot
sees a landmark with a known real height hR and if its height in the image hI

is known as well, it is easy to determine the height of the horizon in the image,
as it equals h·hI

hR
, as can be seen in the figure 4. By definition, the line of the

horizon goes through the center of the image, if and only if the camera tilt is
exactly π

2 . Thus the camera tilt can be determined as follows, in accordance to
section 3.1

β =
π

2
− α.

3.4 Roll Correction Using Objects Higher than Eye-Level

In the methods outlined in the sections 3.1, 3.2 and 3.3 we assume that the
camera is not rotated on the optical axis (i. e. roll = 0).

Not only does this rotation have an effect on the calculation of the tilt; it also
influences the following calculation of the distance to respective objects, if these
are not located in the center of the image.

The effects of the rotation on the tilt are examined in detail in section 4.22.
In order to calculate the roll we can use the inclination of objects in the image.
For example, in the case of a landmark of the 4-Legged League, the horizon is
always perpendicular to it. Another method to calculate the slope of the horizon
is to determine the height of the horizon by means of several objects, e.g. two
goal posts as shown in figure 4 (left). The roll can be easily calculated with the
slope of the horizon. If we think of the horizon as a line in the image, the roll of
the camera is the gradient of the straight line.

3.5 Using Knowledge about the Kinematic Chain

In some cases, the kinematic chain is known so that the position of the camera
can be deduced by means of the joint data. For example, this holds true for AIBO.
2 The effects on the rotation of the camera on the distance become obvious in the

section 2.
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hH

l1
l2

Fig. 5. Relation between the height of the camera and the angle of the neck-joint

In this case the whole kinematic chain can be determined via the joint data.
However, the results are partly rather inaccurate. This is due to the fact that
the contact points of the robot and the ground cannot be determined precisely.
Furthermore, some of the joint sensors provide inaccurate data. In this section
we want to examine how the knowledge of the kinematic chain can be combined
with the outlined methods in order to achieve better results.

All the outlined methods provide us with the relations, or dependencies, be-
tween the different parameters of the camera, as e.g. the tilt and the height,
which result from the respective observations. The kinematic chain also yields
information on the relations of these parameters. Thus it is evident to try and
determine the interesting parameters so that all given relations are fulfilled.

In many cases, there are not enough independent relations to determine all
parameters. However, it is possible to write all camera parameters as a function
of the joint angles. In turn, we can consider some of the joint angles as parameters
and optimize them.

As an example, we use the method outlined in section 3.1 in order to correct
the angle of the neck joint in the case of AIBO.

Application for Aibo Robot. According to our findings, AIBO’s neck tilt is
one of the most substantial error sources. This joint particularly has an effect on
the determination of the camera’s height. In the method outlined in section 3.1
the height of the camera is implied in the calculations so that this error also
affects the results.

In order to completely eliminate the influence of the neck joint we have to
make use of our knowledge of the relation between the neck joint and the height
of the camera. This relation is depicted in figure 5. The interdependence of the
height and the neck tilt can be formulated as follows:

h = H + l1 · cos (φ) − l2 · sin (
π

2
− θ − φ)

and for the camera tilt β it holds β = θ−φ. Applying this to the formula outlined
in section 3.1 the following function can be defined:

f(φ) :=
(

h(φ) − ρ

ρ
· sin (α)

)
− cos (β(φ))
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Fig. 6. (left) Camera rotated on its optical axes. (A) is the real coordinate system of
the camera, (B) is the not-rotated coordinate system. The coordinate y is necessary
for the calculation of the distance to an object. However, the coordinate ỹ measured
in the image differs from y in case θ �= 0. (right) Error |β̃ − β| caused by ignoring the
camera roll θ. The y-position is assumed as y = 1mm (nearly the maximal y-position
on the Aibo ERS7 camera chip) and the focal length as f = 3.5mm, θ and x-position
are varied.

The angle φ can be determined as root of the function f . Thus the sensor data
of the neck joint does not affect the determination of distances to other objects.

4 Error Estimation

In this section we want to analyze the effects of errors on the above mentioned
methods in order to evaluate the quality of the results.

4.1 Errors of the Horizon-Based Methods

In many cases, the height of the robot is not known, e.g. if AIBO is walking.
The method outlined in section 3.3 is particularly robust concerning this kind
of errors. Let the error of the robot’s height be he, the resulting error βe of the
roll angle is

tan (βe) =
he

d
,

whereas d is the distance to the object that is used to measure the horizon. In the
case of AIBO this would result in an error of βe = 0.03, if the error of the height
is he = 3cm and the distance between the robot and the goal is d = 1m. The
method becomes more robust with increasing distance to the reference object.

4.2 Estimating Errors Caused by Unknown Camera Roll

The camera tilt is essential for the determination of the distance to other objects.
This is why all outlined methods deal with the correction of the camera tilt.
Actually, there are cases in which the roll angle has a major influence on the
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result. The methods in the sections 3.1, 3.2 and 3.3 the roll angle is ignored.
Thus we want to examine the effect of this on the results. The error estimation
is only performed for the method using the ball as reference object, however for
the other methods it can be done in the same way.

We consider all coordinates concerning the center of the image. Let p = (x, y)T

be the center of the not-rotated image and θ the rotation of the camera on the
optical axis as shown in figure 6 (left). We need the y-position of the ball’s
center in order to correct the tilt. After the application of the rotation we get
the position of the ball’s center as it would be detected in the image, in particular
the measured height of the ball’s center is then given by

ỹ = x · sin θ + y · cos θ.

Thus it is obvious that the extent of the rotation’s influence depends on the
distance between the center of the image and the ball. Figure 6 (left) illustrates
above treatments.

With the notation used in section 3.1 we can denote

β = arccos
(

h − ρ

ρ
· sin (α)

)
+ arctan

ỹ

f

whereas f is the focal length of the camera. Figure 6 (right) illustrates the errors
in case θ = 0. As the figure shows, the error can be neglected if the angle θ is
near zero. Thus, the method will yield acceptable results even though the roll of
the camera is ignored if the roll is small enough.

5 Experiments

A number of experiments have been made with AIBO in order to evaluate the
outlined methods under real conditions.

5.1 Projection Experiments

A good method to evaluate the accuracy of the camera matrix is to project
images to the ground plane. In this subsection we describe two experiments
using this methods. The first experiment evaluates the camera matrix obtained
using the goal in images. In the second experiment a corner of field lines is used
to correct the robots neck tilt joint.

Testing Accuracy of Horizon-Based Tilt and Roll Estimation. This
experiment was performed in order to test the accuracy of the horizon based
methods outlined in the section 3.3 and 3.4.

In the setup of this experiment the robot is situated in the center of the field
and directed towards the blue goal. There is a calibration grid right in front of
the robot.

During the Experiment the robot runs on the spot, the camera is directed
towards the goal. The camera matrix is calculated and the correction is applied
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Fig. 7. (left) the scene from the view of the Aibo robot, (center) projection of the grid
by means of the camera matrix calculated from the joint data, (right) projection of the
grid by means of the corrected matrix

by calculating the tilt and roll angles with the help of the goal in the image
(according to the method outlined in section 3.3). Figure 7 (left) shows the
situation viewed by the robot. The image captured by the camera is projected
to the ground plane by means of both matrices (the one calculated by the means
of the kinematic chain and the corrected one).

Distortions occur if the values of the camera matrix do not correspond to
reality, i.e. the lengths of the edges are not equal any more and the edges do not
form a straight angle. All these effects can be increasingly observed in the case
of a camera matrix that is calculated by means of joint data (figure 7 (center)).
There are no distortions in the case of the corrected matrix, as can be seen in
figure 7 (right).

Testing Field Line Corner Based Tilt Estimation. This experiment con-
sisted of two parts. In the first part the robot was standing and looking straight
ahead at a corner of field lines. The robot’s hind legs were lifted manually by
approximately 10cm resulting in a body tilt of up to 30 degrees. In the second
experiment the robot was running on the same spot again looking at a corner of
field lines. The running motion caused inaccuracies in the measurement of the
neck tilt angle. The body tilt was estimated by the approach described in section
3.2. Both experiments have in common, that the distance to the corner does not
change. To visualize the result of this estimation the images of the corner were
projected to the ground using the camera matrix obtained from the readings of
joint values and using the corrected camera matrix (see figure 8). The distance
to the projected vertex of the corner using the corrected camera matrix was
almost constant over time. Using the uncorrected camera matrix resulted in a
large error in the distance and the angle of the projection of the corner. Thus the
method was able to significantly increase the accuracy of bearing based distance
measurements.

5.2 Distance Experiment

In this experiment we calculate the distance to another robot with the help of
the bearing-based approach. Here, the parameters of the camera are corrected
with different methods, which gives us the opportunity to compare them.
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Ia) Ib) Ic) IIa) IIb) IIc)

Fig. 8. This figure illustrates the correction of camera tilt by the means of corners of
the field lines. The situation from the view of an Aibo and the perceptions of a corner
projected to the ground are shown. In the first experiment the hind legs of the Robot
were lifted manually, thus the resulting offset in the tilt angle can not be calculated
from the joint data only. The figures Ib) and Ic) show the projections of the corner
based on the joint data only, and using the corrected neck tilt respectively. IIb) and
IIc) illustrate the not-corrected and corrected projections of the corner that was seen
while by robot while walking on a spot.
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Fig. 9. (top) The distance determined by means of the camera tilt calculated from
the joint data is shown in comparison to the distance determined with the help of the
method using the size of the ball (outlined in section 3.1) and the method based on
the horizon (outlined in section 3.3). (bottom) comparison between the results of the
method using the ball as reference object and the combination of this method with the
knowledge of the kinematic chain as described in section 3.5.

The setup is the same as in the experiment described above. However, there is
no calibration grid in front of the robot. In addition, there are a ball and another
robot in the robot’s visual field.

In this experiment we correct the camera matrix with the help of the ball
(directly and indirectly) and the goal, respectively. In order to compare the
results we determine the distance to the other robot with the different corrected
camera matrices, respectively. As the observing robot runs on the spot and the
other robot does not move, the distance between them is constant. However,
the calculated distance varies, due to errors. Figure 9 summarizes and compares
the different results within the time scope of about 30 seconds.
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The deviations in the not-corrected case are particularly very high. The best
results were achieved by applying the horizon-based method. The two methods
using the ball as reference object provide nearly identical results that are feasible.

6 Conclusion

We showed several methods to determine the camera pose of a robot relative
to the ground using reference objects. This can help to improve bearing-based
distance measurements significantly. Our work is relevant for all kinds of robots
with long kinematic chains or unknown contact points to the ground as for these
robots it is hard to determine the orientation of the camera using proprioception.
As we provided methods for different kinds of reference objects there is a hight
probability for a robot to see a suitable reference object. Experiments on Aibo
showed that the methods work in practice.
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Abstract. The existing reinforcement learning approaches have been
suffering from the curse of dimension problem when they are applied to
multiagent dynamic environments. One of the typical examples is a case
of RoboCup competition since other agents and their behaviors easily
cause state and action space explosion. This paper presents a method of
hierarchical modular learning in a multiagent environment by which the
learning agent can acquire cooperative behaviors with its teammates and
competitive ones against its opponents. The key ideas to resolve the issue
are as follows. First, a two-layer hierarchical system with multi learning
modules is adopted to reduce the size of the state and action spaces. The
state space of the top layer consists of the state values from the lower
level, and the macro actions are used to reduce the size of the action
space. Second, the state of the other to what extent it is close to its own
goal is estimated by observation and used as a state value in the top
layer state space to realize the cooperative/competitive behaviors. The
method is applied to 4 (defence team) on 5 (offence team) game task,
and the learning agent successfully acquired the teamwork plays (pass
and shoot) within much shorter learning time (30 times quicker than the
earlier work).

1 Introduction

Recently, there have been increasingnumber of studies on cooperative/competitive
behavior acquisition in a multiagent environment by using reinforcement learning
methods [3,4,6,8,10]. In such an environment, the state and action spaces for the
learning can be easily exploded since not only objects but also other agents should
be involved in the state and action spaces, and therefore the sensor and actuator
leveldescriptionsmay cause information explosion that disables the learningmeth-
ods to be applied within practical learning time. Kalyanakrishnan et al. [6] showed
that the learning can be accelerated by sharing the learned information in the 4
on 5 game task. However, they need still long learning time since they directly use
the sensory information as state variables to decide the situation. Stefan et al. [3]

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 101–112, 2008.
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achieved the cooperative behavior learning task between two real robots by intro-
ducing the macro action that is abstracted action code predefined by the designer.
However, only the macro actions do not seem sufficient to accelerate the learning
time in a case that more agents are included in the environment. Therefore, the
sensory information should be also abstracted to reduce the size of the state space.

A modular learning system is suitable for observing/learning/executing a
number of behaviors in parallel, and various modular architectures have been
proposed so far [5,7,12,2]. Each module is responsible for learning to achieve a
single goal. One arbiter or a gate module is responsible for merging information
from the individual modules in order to derive a single action performed by the
robot. The prediction of other’s behavior is important to realize the cooperative
(competitive) behaviors with (against) others in general. Takahashi et al. [11]
proposed a method to infer the other’s intention by observation based on the
idea that the increase of the state value (the larger the state value, the closer to
the goal) means the other intends to achieve the corresponding goal regardless of
the differences of viewpoint and/or action to achieve the goal. If this prediction
capability is incorporated into the learning system, the learner can efficiently
acquire the desired behaviors.

This paper presents a method of hierarchical modular learning in a multiagent
environment by which the learning agent can acquire cooperative behaviors with
its teammates and competitive ones against its opponents. The key ideas to
resolve the issue are as follows. First, a two-layer hierarchical system with multi
learning modules is adopted to reduce the size of the state and action spaces. The
state space of the top layer consists of the state values from the lower level, and
the macro actions are used to reduce the size of the physical action space. Second,
the state of the other to what extent it is close to its own goal is estimated by
observation and used as a state value in the top layer state space to realize the
cooperative/competitive behaviors. The method is applied to 4 (defence team)
on 5 (offence team) game task, and the learning agent successfully acquired the
teamwork plays (pass and shoot) within much shorter learning time (30 times
quicker than the earlier work).

2 Multi Module Learning System with Other’s State
Value Estimation Modules

2.1 Architecture

Fig.1 shows a basic architecture of the proposed system, i.e., a two-layered multi-
module reinforcement learning system. The bottom layer (left side of this figure)
consists of two kinds of modules: action modules and estimation ones that infer
the other’s state value. The top layer (right side of the figure) consists of a single
gate module that learns which action module should be selected according to the
current state that consists of state values sent from the modules at the bottom
layer. The selected module then sends action commands based on its policy.
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Fig. 1. A multi-module learning system

2.2 Action Module

An action module of the lower layer has a reinforcement learning module which
estimates state values for the action.

Fig. 2. Agent-environment interaction Fig. 3. Sketch of a state value function

Figure 2 shows a basic model of reinforcement learning. An agent can discrim-
inate a set S of distinct world states. The world is modeled as a Markov process,
making stochastic transitions based on its current state and the action taken by
the agent based on a policy π. The agent receives reward rt at each step t. State
value V π, the discounted sum of the reward received over time under execution
of policy π, will be calculated as follows:

V π =
∞∑

t=0

γtrt. (1)

In case that the agent receives a positive reward if it reaches a specified goal
and zero else, then, the state value increases if the agent follows a good policy
π (see Figure 3). The agent updates its policy through the interaction with the
environment in order to receive higher positive rewards in future. For further
details, please refer to the textbook of Sutton and Barto[9] or a survey of robot
learning[1]. Here, we suppose that the state values in each action module have
been already acquired before the learning of the gate module.
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2.3 Other’s State Value Estimation Module

The role of the other’s state value estimation module is to estimate the state
value that indicate the degree of achievement of the other’s task by observa-
tion, and to send this value to the state space of the gate module at the top
layer. In order to estimate the degree of achievement, the following procedure is
taken.

1. The learner acquires the various kinds of behaviors that the other agent may
take as macro actions.

2. The learner estimates the sensory information observed by the other through
the 3-D reconstruction of its own sensory information.

3. Based on the estimated sensory information of the other, each other’s state
value estimation module estimates the other’s state value by assigning the
state value of the corresponding action module of its own.

2.4 Cooperative/Competitive Behavior Learning Module

As shown in Figure 1, the gate module receives state values of lower modules,
that is, the action modules and the other’s state value estimation ones, and
constructs a state space with them. The state space of the gate module is con-
structed as direct product of the variables of the state values. In order to adopt
a discrete state transition model described above, the state space is quantized
appropriately. The action set of the gate module is constructed with all action
modules of the lower layer as macro actions.

3 Task and Assumptions

The game consists of the offence team (five players and one of them can be the
passer) and the defence team (four players attempt to intercept the ball). The
offence player nearest to the ball becomes a passer who passes the ball to one
of its teammates (receivers) or shoot the ball to the goal if possible while the
opposing team tries to intercept it (see Fig. 4).

Only the passer learns its behavior while the receivers and the defence team
members take the fixed control policies. The receiver becomes the passer after
receiving the ball and the passer becomes the receiver after passing the ball.
After one episode, the learned information is circulated among team members
through communication channel but no communication during one episode. The
action and estimation modules are given a priori.

The offence (defence) team color is magenta (cyan), and the goal color is blue
(yellow) in the following figures. The game restarts again if the offense team
successfully scores a goal, kicks the ball outside of the field, or the defense team
intercepts the ball from the opponent.
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Fig. 4. A passer and the defence for-
mation

Fig. 5. A real robot

3.1 Offence Team

The passer who is the nearest to the ball learns the team player behavior by
passing the ball to one of four receivers or dribbling and shooting the ball to the
goal by itself. After its passing, the passer shows a pass-and-go behavior that is
a motion to the goal during the fixed period of time automatically. The receivers
face to the ball and move to the positions so that they can form a rectangle by
taking the distance to the nearest teammates (the passer or other receivers) (see
Fig. 4). The initial positions of the team members are randomly arranged inside
their territory.

3.2 Defence Team

The defence team member who is nearest to the passer attempts to intercept
the ball, and each of other members attempts to “block” the nearest receiver.
“Block” means to move to the position near the offence team member and be-
tween the offence and its own goal (see Fig. 4). The offence team member at-
tempts to catch the ball if it is approaching. In order to avoid the disadvantage
of the offence team, the defence team members are not allowed inside the penalty
area during the fixed period of time. The initial positions of the team members
are randomly arranged inside their territory but outside the center circle.

3.3 Robots and the Environment

Fig. 5 shows a mobile robot we have designed and built. Fig. 6 shows the viewer
of our simulator for our robots and the environment. The robot has an omni-
directional camera system. A simple color image processing is applied to detect
the ball, the interceptor, and the receivers on the image in real-time (every
33ms.) The left of Fig. 6 shows a situation the agent can encounter while the
right images show the simulated ones of the normal and omni vision systems.
The mobile platform is an omni-directional vehicle (any translation and rotation
on the plane).
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Fig. 6. Viewer of simulator

We suppose that the omni directional vision system provides the robot with
3-D construction of the scene. This assumption is needed for the other’s state
value estimation module since it is needed to estimate the sensory information
observed by other robots.

4 Structure of the State and Action Spaces

4.1 State/Action Spaces for the Gate Module

The passer is only one learner, and the state and action spaces for the lower
modules and the gate one are constructed as follows. The action modules are
four passing ones for four individual receivers, and one dribble-shoot module.
The other’s state value estimation modules are the ones to estimate the degree
of achievement of ball receiving for four individual receivers, that is how easily
the receiver can receive the ball from the passer. These modules are give in
advance before the learning of the gate module.

The action spaces of the lower modules adopt the macro actions that the
designer specifies in advance to reduce the size of the exploration space without
searching at the physical motor level.

The state space S for the gate module consists of the following state values
from the lower modules:

– four state values of passing action modules corresponding to four receivers,
– one state value of dribble-shoot action module, and
– four state values of receiver’s state value estimation modules corresponding

to four receivers.

In order to reduce the size of the whole state space, these values are binarized,
therefore its size is 24 x 2 x 24=512.

The rewards are given as follows:

– 10 when the ball is shot into the goal (one episode is over),
– -1 when the ball is intercepted (one episode is over),
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– 0.1 when the ball is successfully passed,
– 0.3 when the ball is dribbled.

When the ball is out of the field or the pre-specified time period elapsed, the
game is called “draw” and one episode is over.

4.2 State Space for the Passing Module

The state space of the passing module S is defined on the omni directional
camera image as follows (see Fig. 7(a)):

– the smallest angle among angles between the receiver and one the defence
players who is nearer to the passer than the receiver (θ1), and

– the angle between the receiver and one of the defence players who is nearest
to the passer (θ2).

(a) (b)
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Fig. 7. State variable (a), examples of state values (b), and state value map of the pass
module (c)

The both angles are quantized into ten levels including an invisible case,
therefore the total number of states is 100. An example of the state values of
four receivers is shown in Fig. 7(b) where the passer is the robot 3 (hereafter,
r3 in short), and the color bars near four robots (r0, r1, r2, and r4) indicate
the state values of the pass modules for four receivers, respectively. The higher
the bar is, the higher the state value is. Since the pass courses for r1 and r2
are not intercepted by the defence players, their state values are high while the
state values for r0 and r4 are low since their pass courses are intercepted by the
defence players.

The state value map is shown in Fig. 7(c) that indicates the smaller the angle
between the receiver and the defence player is, the lower the state value is. The
black region (one region is separated in the figure) is inexperience area.
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4.3 State Space for the Dribble-Shoot Module

The state space of the dribble-shoot module S is defined on the omni directional
camera image as follows (see Fig. 8(a)):

– the angle between the opponent goal and one of the defence players who is
nearest to the passer (θ1),

– the angle between the ball and one of the defence players who is nearest to
the passer (θ2),

– the distance to the nearest defence player (r), and
– the angle between the both edges of the opponent goal (θ3) that represents

the distance to the goal.

These state values are quantized into eight, five, eight, and seven, respectively.
The total number of states is 8 x 8 x 5 x 7 = 2240.

The state value map of the dribble-shoot module in terms of θ1 and r with
fixed values of θ2 and θ3 is shown in Fig. 8(b) that indicates the nearer the
defence player is, the smaller the state value is.

Two examples of the state values of the passer expected to take a role of a
shooter is shown in Fig. 9 where the color bars near the passer indicate the state
values of the dribble-shoot modules. The higher the bar is, the higher the state
value is. Since the passer (r1) is near the goal and no defence players around in
Fig. 9 (left), the state value is high while the state value of the passer (r3) in
Fig. 9 (right) is low since it is located far from the goal and the defence players
are around it.

(a)

θ
(d

eg
re

e)

r  (mm)

(b)

Fig. 8. State variables (a) and state values (b) for the dribble and shoot module

Fig. 9. Two examples of the state values: high (left) and low (right)
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Fig. 10. State variables (a), examples of state values (b), and state value map (c) of
the receiver module

4.4 State Space for the Receiver’s State Value Estimation Module

The passer infers each receiver’s state that indicates how easily the receiver can
shoot the passed ball to the goal by reconstructing its TV camera view of the
scene from the passer’s omnidirectional view. Since we suppose that the passer
has already learned the shooting behavior, the passer can estimate the receiver’s
state value by assigning its own experienced state of the shooting behavior.

The state space S for the receiver’s state value estimation module consists of:

– The distance to the nearest defence player (r)
– The angle between the both side edged of the opponent goal (θ1) that rep-

resents the distance to the goal (see Fig. (10(a)).).

The both are quantized into five and seven levels, therefore the number of
states are 5 x 7 = 35.
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Fig. 12. An example of the acquired behavior
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An examples of the state values of the receiver’s state value estimation mod-
ules is shown in Fig. 10(b) where the color bars near the four receivers indicate
their state values. The higher the bar is, the higher the state value is. Since the
receiver (r0) is near the goal and no defence players around, the state value is
high while the state values of other receivers (r1, r2, and r4) are low since it is
located far from the goal and/or the defence players are around it.

The state value map of the receiver’s state value estimation module in terms
of θ1 and r is shown in Fig. 10(c) that indicates the nearer (further) the defence
player is and the further (nearer) the goal is, the smaller (larger) the state value
is. The black region is inexperienced area.

5 Experimental Results

The success rate is shown in Fig. 11(a) where the action selection is 80% greedy
and 20% random to cope with new situations. Around the 900th trial, the learn-
ing seems to have converged at 30% success, 70% failure, and 10% draw. Com-
pared to the results of [6] that has around 30% success rate with 30,000 trials, the
learning time is drastically improved (30 times quicker). Fig. 11(b) indicates the
number of passes where it decreases after the 350 trials that means the number
of useless passes decreased.

In cases of the success, failure, and draw rates when 100% greedy and 100%
random are 55%, 35%, 10%, and 2%, 97%, 1%, respectively. The reason why
the success rate in case of 100% greedy is better than in case of 80% greedy
seems that the control policies of the receivers and the defence players are fixed,
therefore not so new situations happened.

An example of acquired behavior is shown in Fig. 12 where a sequence of
twelve top views indicates a successful pass and shoot scene.

6 Conclusion

We have used the state values instead of the physical sensor values and macro
actions instead of the physical motor commands, and adopted the receiver’s state
value estimation modules that infer how easy for each receiver to receive the
ball in order to accelerate the learning. As a result, we have much improved the
learning time (30 times quicker!) compared to the result of the existing method
[6] that has 32% success with communication and 23% without communication
at around the 30,000th trial when the learning seems to have converged.
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Abstract. This article investigates the prerequisites for a global explo-
ration strategy in an unknown environment on a virtual disaster site.
Assume that a robot equipped with a laser range scanner can build a de-
tailed map of a previous unknown environment. The remaining question
is how to use this information on this map for further exploration.

On a map several interesting locations can be present where the ex-
ploration can be continued, referred as exploration frontiers. Typically, a
greedy algorithm is used for the decision which frontier to explore next.
Such a greedy algorithm only considers interesting locations locally, fo-
cused to reduce the movement costs. More sophisticated algorithms also
take into account the information that can be gained along each frontier.
This shifts the problem to estimate the amount of unexplored area behind
the frontiers on the global map. Our algorithm exploits the long range
of current laser scanners. Typically, during the previous exploration a
small number of laser rays already passed the frontier, but this number
is too low to have major impact on the generated map. Yet, the few rays
through a frontier can be used to estimate the potential information gain
from unexplored area beyond the frontier.

1 Introduction

RoboCup Rescue is a competition in which (teams of) fully autonomous robots
visit a hypothetical disaster site. This situation is either simulated in the real
world [1] or a virtual world within the USARSim simulator [2]. The task for
the robots in the competition is to explore the site and locate victims. There
is a limited amount of time in which the robots can explore. Afterwards the
competing teams will be scored on a various criteria, among them are the size
of the explored area, the quality of the map and most importantly, the number
of located victims (for a more detailed list and scoring see [3]).

An important problem in the competition is the autonomous exploration prob-
lem; to decide on the basis of the current map where to send the robot to improve
the future map [4]. A correct choice would improve the competition score, which
depends on the explored area and the quality of the map. Predictions about
what would be visible on the edges of the current map could help to make better
decisions for the robot.

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 113–123, 2008.
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In this work we build upon the contribution of the UvA Rescue team [5], which
provided a fully autonomous agent system that controls up to eight virtual robots
in the USARSim simulator [2]. The system already has a state of the art method
[6] for simultaneously locating and mapping (SLAM) unknown environments,
based on the Manifold approach [7] combined with the Weighted Scan Matching
algorithm [8]. The exploration strategy of the robots is kept simple. The behavior
is reactive and makes decision based on direct measurements, not on the current
map. The goal of this work is to improve the exploration strategy by intelligently
using global information that can be derived from the map. As demonstrated
in [9], efficient allocation of the search effort can outperform simple exploration
strategies. In the article the focus is on the exploration behavior of a single robot
(or agent).

The outline of this paper is as follows. In Sect. 2 we will introduce some
theoretical background behind this research. In Sect. 3 our algorithm will be
worked out. The robustness of our method on maps from the RoboCup Rescue
Competition will be demonstrated in Sect. 4. Finally, we draw our conclusions
in Sect. 5.

2 Background

Exploration is the problem of directing a robot through the environment so that
the knowledge about the external world is maximized [10]. Knowledge about the
external world for a mobile robot is typically stored on a map m. Increasing the
knowledge stored on a map can mean that the uncertainty about information
on the map is reduced, or that new information is added to the map. The latter
means that the map coverage is extended with parts of the external world that
the robot has not seen before. Knowledge about the map m can be passively ac-
quired, while the robot is wandering around busy with other tasks (for instance
finding victims), as demonstrated by [11]. Here the focus is on autonomous ex-
ploration; the planning of the next exploration action a which will increase the
knowledge about the world the most. Before this estimate is worked out in more
detail, it should be noticed that such an exploration action can be quite complex
from navigational point of view. Executing such an exploration action can mean
that large parts of the current map are traversed, which can only be efficiently
done with the availability of on-line path-planning functionality.

For a mobile robot it is important to remember were obstacles are located.
This information can be represented with an occupancy grid map [12], where
each grid cell indicates the probability p(x) if that location x is occupied or free.
Active exploration can been seen as minimizing the information entropy H(m)
[13] of the probability distribution p(x) for all x on the map m, which requires
an integration over the complete occupancy grid map:

H(m) = −
∫

x∈m

p(x)log(p(x)) (1)

When all grid cells are initialized as unknown by giving them a uniform value of
p(x) = 0.5, the entropy of the map H(m) is maximal. When the boundaries of
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the map m are not known, the limits of the integral are slowly extended when
new areas are discovered. The interest is not in the absolute value of the entropy,
but in the difference in entropy before H(m) and after H(m|a) an exploration
action a; the information gain ΔI(a) [14,15,16]. Remember that the exploration
action a could be a complex maneuver, consisting of a number of controls ui and
observations zi for multiple timesteps i.

ΔI(a) = H(m|a) − H(m) (2)

Because the set of possible exploration actions can grow very fast when predic-
tions are needed multiple timesteps in the future, this set is approximated. In
existing exploration methods the number of exploration actions is reduced by
considering only the path to a finite number of candidate observation points.
Typically, those candidate observation points are chosen on the boundary of
explored and unexplored areas; frontier-based exploration [17].

One of the most interesting approaches to generate and select those candidate
observation points is the presented by González-Baños [18]. They model explo-
ration frontier with free curves; polylines which indicate where the laser range
scanner reported values larger than a threshold rmax. Near those free curves a
number of candidate observation points are considered . This number of can-
didate points is generated randomly with a Monte-Carlo method, and for each
point q they simulate a number of laser scans through the free curve. The amount
of area A(q) covered by those rays (with a maximum length rmax) is taken in ac-
count as a measure of the potential information gain ΔI(aq) for the observation
zq at the observation point q.

Fig. 1. The potential information gain of a candidate observation point q is the area
A(q) that may be visible through the two free edges; this area is estimated by casting
rays from q. Courtesy from [18].

The area A(q) is an estimation for the information gained from the obser-
vation zq. This implicitly ignores the information that could be gained by the
observations z1, . . . , zq−1 along the path to the observation point q. When the
robot traverses mainly well known regions on its path to point q this is a reason-
able assumption. Yet, the exploration action aq consists not only of a number
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of observations z1, . . . , zq, but also of a number of controls u1, . . . , uq to drive
the path. Because control is never perfect, confidence about the location of the
robot is lost for every control step ui. Probabilities spread out over the map,
resulting in a loss of information. An optimal exploration action a∗ can only be
chosen when the cost of traveling along a path u1, . . . , uq is taken into account.
Typical traveling cost functions are the distance traveled, the time taken or the
energy expended. González-Baños has chosen to use as cost-function the length
L(q) of the path u1, . . . , uq to a candidate observation point q. They combine
the cost of the path u1, . . . , uq and the estimated gain of the observation zq for
the evaluation action aq into the following value function V (q):

V (q) = A(q)e−λL(q) (3)

The constant λ can be used balance the cost of motion L(q) against the expected
gain of information A(q).

For the observation points found in this article an equivalent value function
could be calculated. Note, however, that the area A(q) of González-Baños is ex-
trapolated from the current map by simulating a number of laser-rays through
the frontier, while in our case the area A(q) is directly estimated from the laser
range measurements. Another difference is the generation of observation points.
González-Baños generates multiple candidate observation points on a short ran-
dom distance from the exploration frontiers. In our approach, per frontier a
single candidate observation point is generated, in the center of the exploration
frontier.

3 Estimation of Exploration Frontiers and Observation
Points

A good autonomous exploration algorithm should navigate the robot to an op-
timal observation point. This point will be close to an exploration frontier. To
find such an exploration frontier is not trivial. Exploration frontiers can be found
based on an occupancy grid map. The probability that a point is an obstacle or
not on a certain location can be stored in occupancy grid with arbitrary resolu-
tion. An example of such occupancy grid map is given in Fig. 2, an actual map
produced during the Virtual RoboCup Rescue competition by the UvA Rescue
team with a resolution of 1 centimeter. The map gives a top view of an office
environment, where clearly three corridors are visible that are well explored, and
a number of adjacent rooms that are not entered yet.

Grid points on a map can be combined to regions, when the edges of the
regions can be found. As can be seen from the example (Fig. 2), the boundaries
of the safe region are only sharp along walls. Inside the rooms and at the end of
the corridors the boundaries of the safe region are fuzzy. Selecting an absolute
threshold for this boundary is difficult [19]. Still, a human can clearly distin-
guished safe regions and indicate the regions that should be further explored
(observation regions). What is difficult, also for a human, is the precise location
of the boundary between those regions; the exploration frontier.
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Fig. 2. The occupancy grid map produced during the semi-final by one the robots

The method used in this paper to distinguish safe regions from observation
regions is based on a simple ray-casting technique. Ray-casting is used to gener-
ate an occupancy grid from the scan-data stored in the manifold [11]. The trick
is to generate two occupancy grids at the same time; one with a short range
constraint rsafe and one with a long range constraint rmax equal to maximum
range of the laser scanner. A typical value for rsafe is 2 meters and for rmax

20 meters. The occupancy grid with a short range constraint rsafe generates a
conservative estimate of the obstacle free space; the safe region.

An example of such safe region is given in Fig. 3.a. The three corridors of the
office environment can be recognized in this picture. From the contour of the safe
region the exploration frontier can be derived. The contour of the safe region is
indicated in Fig. 3.b. The exploration frontier is only a part of the contour, the
other part of the contour are walls (Fig. 3.c). The part of the safe region contour
that is no wall can be identified as the exploration frontier (Fig. 3.d).

The same ray-tracing can be repeated with the long range constraint rmax.
With the long range constraint a less conservative estimate of free space is gen-
erated. The areas are probably free of obstacles, but not guaranteed to be safe.
The result is visualized in Fig. 4. Outside the corridors new contours are visible:
the rooms along the corridor. These contours are the areas which are probably
free, but not guaranteed to be safe: the observation regions (indicated in yellow).
These observation regions are not equivalent with unknown areas; there also ex-
ist large parts of the map where the probability p(x) is still on its initial value.
The frontiers between the observation regions and the safe regions, as shown in
Fig. 3.d, are also given (indicated in grey). The convex frontiers contours are ex-
tended with a small white point which is the center of the contour. These centers
can be associated with potential observation points. From each point in the safe
region the path to such a potential observation point q can be estimated with a
breath-first algorithm. An example of such path is indicated in green, from the
start position indicated with a large white point in the upper-right corner.
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a b c d

Fig. 3. The safe region of Fig. 2 (90o degrees rotated). From left to right respectively
a) The surface. b) The contour. c) The part of the contour which is an obstacle (wall).
d) The part of the contour which is free (frontier).

Fig. 4. The interpreted map of Fig. 2. The yellow contours indicate the observation
regions. The grey contours indicate the exploration frontiers. The large white circle
indicates the current position of the robot. The small white circles indicates potential
observation points. The green line indicates a possible path to those observation points.
Red lines indicate the walls.



Beyond Frontier Exploration 119

In this example one can also see that the process of frontier estimation is not
completely failsafe. Going from one corridor to another, the robot makes a sharp
turn (top of Fig. 3). During such turn the confidence in the location estimate can
drop. At that moment multiple laserscans of the same wall do not completely
overlap, and the wall as edge is not sharp. In that case a part of the wall is
seen as unknown, and such a contour could be incorrectly identified as frontier.
The effect is visible near the upper right corner in Fig. 3.d. To prevent false
positives like this, the following consistence check is designed. All frontiers are
tested if they are concave or convex. Only convex frontiers generate candidate
observation points q in Fig. 4. Many of the false frontiers can be removed because
they are concave. The result is a slight increase of the number of false negatives,
as indicated in the Sect. 4.

4 Results

In the previous sections we have illustrated our methods on the map given in
Fig. 2. In this map several potential observation points were identified, as shown
in Fig. 4. To test the reliability of our method the number of observation points
is compared against the number of points that should have been found. After the
2006 competition the environment used during the RoboCup was made available
for inspection1. A top view of this environment is visible in Fig. 5.a. The three
corridors explored on the map can be found in the upper-right corner of Fig. 5.a.

With the provided environment as reference, the number of doorways and
corridors that the robot has passed during its exploration can be counted. For the
map given in Fig. 2 in total 2 corridors and 20 doorways to 20 rooms are passed.
There is another doorway to a 21st room, but this doorway is blocked by a victim.
The algorithm skipped this doorway correctly. The results are summarized in
Table 1. Next to the expected and found number of doorways, the number of
false positives and false negatives are given. This is done for both the exploration
frontiers (both convex and concave) and the observation points (center of convex
exploration frontier). One can see that the number of false positives is reduced
by only selecting convex exploration frontiers.

To demonstrate the robustness of the algorithm, the procedure is repeated for
two other maps that could have been encountered during the competition. The
first map is tour that begins and ends in the lobby, the light-grey area at the
bottom of Fig. 5.a. During this tour 6 corridors and 7 doorways to rooms should
have been found. For the majority of the corridors and rooms an observation
point is found, as can be seen from Table 1 and Fig. 5. The missed corridor and
room are located in the left lower corner. The robot came through the narrow
passage at the left and turned back towards the lobby. Due to this turn the robot
did not get a clear view into the corner. The doorway to the room is visible; the
6th corridor stays mainly hidden behind the robot. The combined frontier of
the corner, doorway and corridor was irregular of shape and not convex, which
resulted in a false negative.
1 http://sourceforge.net/projects/usarsim

http://sourceforge.net/projects/usarsim
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Table 1. Experimental results

expected exploration observation
frontiers & frontiers points
observation false false false false

points found positives negatives found positives negatives

Three corridors 22 27 6 1 21 0 1
(Fig. 2)
Lobby loop 13 17 5 1 11 0 2
(Fig. 5)
Yellow arena 9 17 8 0 9 1 1
(Fig. 6)

a

b c

Fig. 5. Overview of the indoor area used for the 2006 RoboCup Virtual League Com-
petition. Fig. b and c show the results of exploring a loop starting and ending in the
large lobby at the bottom of Fig. a. On this map 11 of the 13 observation points are
found.

Last, but not least, the algorithm was tested on the Yellow arena. This is
classical benchmark in the RoboCup Rescue competition, where an irregular
office-maze is build with flexible walls. The Yellow arena is also visible in Fig. 5.a,
the large room to the right of the lobby. Fig. 6.a gives a closer look at this
environment. In this office-maze it is less obvious to indicate what the frontiers
are that should have been explored. For instance, central in the Yellow arena is
a bed. The algorithm indicated with the three green paths that an observation
should be made at the left, at the right and under the bed. This was classified as a
correct decision. Another aspect is the open space in the rooms. The rooms were
sometimes so large that frontiers appeared in the corners. These frontiers in the
corner have a convex shape, and could be selected if the observation space behind
the frontier was large enough. Checking the corners of a room is probably quite
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a

b c

Fig. 6. Results of the Yellow-Arena map. Fig. b and c show the results of exploring a
loop starting and ending in the curved wall in the center of the figures. On this map
9 observation points are found (one false positive).

robust, but probably not highly efficient. Both the false positive and negative
were related with a corner. At the bottom left of Fig. 6.c a doorway is missed,
because that corner was not explored from close enough distance. On the other
hand an observation point is generated to check the tiny space behind the ‘W’-
shaped obstacle. Fortunately many other observation points are generated which
much more area behind the frontier, which make them far more attractive for
exploration. This observation point was classified as a false positive.

Overall, these experiments, summarized in Table 1, demonstrate the robust-
ness of the algorithm. The algorithm generated a limited number of potential
observation points. The impact of the false negatives (4 of the 44 potential obser-
vation points were missed) on the exploration behavior will be minor. As long as
there are enough candidate observation points, the robots can coordinate their
actions and distribute the points over the team. They can optimize their effort
by optimizing a joint value function equivalent with equation (3).

5 Conclusion

In this report an algorithm is proposed to generate a limited number of ob-
servation points, and to estimate the information that could be gained at each
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location. The method generates exploration frontiers on the contours of safe re-
gions. One observation point is generated per convex exploration frontier. The
potential information gain for each observation point is estimated based on the
area of obstacle free space beyond the exploration frontier. This estimate of the
area is based on measurements, and not on extrapolations from the current map.
The algorithm shows good results in office-environments.

In our future research it will be demonstrated how much the exploration
efficiency will increase by selecting the observation point with highest potential
information gain and the lowest travel costs.
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Abstract. This paper describes Electronic Blocks, a new robot construction 
element designed to allow children as young as age three to build and program 
robotic structures. The Electronic Blocks encapsulate input, output and logic 
concepts in tangible elements that young children can use to create a wide variety 
of physical agents. The children are able to determine the behavior of these agents 
by the choice of blocks and the manner in which they are connected. The 
Electronic Blocks allow children without any knowledge of mechanical design or 
computer programming to create and control physically embodied robots. They 
facilitate the development of technological capability by enabling children to 
design, construct, explore and evaluate dynamic robotics systems. A study of four 
and five year-old children using the Electronic Blocks has demonstrated that the 
interface is well suited to young children. The complexity of the implementation 
is hidden from the children, leaving the children free to autonomously explore the 
functionality of the blocks. As a consequence, children are free to move their 
focus beyond the technology. Instead they are free to focus on the construction 
process, and to work on goals related to the creation of robotic behaviors and 
interactions. As a resource for robot building, the blocks have proved to be 
effective in encouraging children to create robot structures, allowing children to 
design and program robot behaviors. 

Keywords: Educational robotics, robot construction kit, robot programming 
environment. 

1   Introduction 

Robot building and programming allows children to become creators of technology. 
As designers and builders of technology, children become more deeply engaged with 
technology education than they might from more conventional classroom activities. 
However it is only in recent years that classroom robot building has become possible 
for children in middle and secondary school, with the advent of resources such as the 
LEGO® RCX™ brick. Now, with these type of resources available, children from 
around the world have become engaged in robot building and programming, as 
evidenced by the success of programs such as RoboCup Junior. 

In the specialist area of early childhood education there remains the challenge for 
educators to develop educational programs which include technology that is suitable 
to the unique needs and abilities of this age group. There are concerns about the 
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young children’s physical and cognitive readiness to use computers and other 
technological artifacts. Robot building and programming is a case in point. Given that 
young children, between the ages of three and six years, are only just acquiring the 
rudiments of notational systems and struggle with symbolization in language, 
pictures, three-dimensional objects and pretend play [1][2][3], it is apparent that 
existing technology is unsuitable for all but the most gifted in this age group.  

This paper details the use of Electronic Blocks designed for young children aged 
between four and eight. Electronic Blocks are a new resource for technology 
education which have been designed and built to provide an appropriate means 
through which young children are able to create and program simple robots. The 
paper describes the blocks, and illustrates their effectiveness from observations of a 
two week study of four and five year old children as they used the Electronic Blocks. 

2   Background 

In identifying the way in which technology should be used in early childhood 
education, Yelland [4] looks towards environments that are stimulating and encourage 
active exploration of objects and ideas. Such environments facilitate quality 
technology education – the technology becomes a resource which allows young 
children to be involved in the design and production processes to produce various 
outcomes. Resnick [5] agrees and asserts that the 

Best computational tools do not simply offer the same content in new clothing; 
rather, they aim to recast areas of knowledge, suggesting fundamentally new ways of 
thinking about the concepts in that domain, allowing learners to explore concepts that 
were previously inaccessible. 

Resnick and his group at the MIT media lab based their research on this 
philosophy. They started with the development of LEGO/Logo [6] which combined 
the LEGO Technic product with the Logo programming language. It was the first 
robotic construction kit ever made widely available [7]. Unfortunately, each 
construction built in a LEGO/Logo environment by necessity was connected to a 
computer via wires. This led to a lack of mobility and was the greatest limitation of 
LEGO/Logo [7].  

The Programmable Brick is a successor to this research. The Programmable Brick is 
a tiny computer embedded inside a LEGO brick that children use to build systems that 
behave and respond to their environment [8]. Children included the Programmable 
Brick into their regular LEGO constructions and then wrote Logo computer programs to 
make their creations react and behave. The second generation of the Programmable 
Brick – the Red Brick – was specifically designed for robustness and ease of 
manufacture and this Brick was widely used in classroom settings [7]. The success of 
the Red Brick is highlighted by the final version of the Programmable Brick – the 
LEGO™ RCX® Brick which is now a commercially available product, and is widely 
used by children in robot competitions such as RoboCup Junior.  

A construction kit called Cricket was developed as a successor to the Programmable 
Brick. Crickets are small Programmable Bricks that, in addition to connecting to motors 
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and sensors, can communicate with each other via infrared light [8]. The communication 
ability of Crickets allows children to think about systems of communicating entities and 
explore the behaviors that arise from Cricket interactions. Like the Programmable Brick, 
Crickets are fully programmable with children being able to write and download 
computer programs into the Crickets from a desktop computer [9].  

The development of curlybot, under the direction of Hiroshi Ishii at MIT, has 
occurred in parallel to the development of Crickets. curlybot is aimed at children in 
their early stages of development - ages four and up [10]. It is an autonomous two-
wheeled vehicle with embedded electronics that can record how it has been moved on 
any flat surface and then play back that motion accurately and repeatedly. Children 
can use curlybot to develop intuitions for advanced mathematical and computational 
concepts, like differential geometry, through play away from a traditional computer 
[10]. In preliminary studies conducted by the developers of curlybot, they found that 
children learned to use curlybot quickly. 

3   Electronic Blocks 

Electronic Blocks aim to provide the same rich robot building and programming 
experiences as the Programmable Brick, but with intuitive tangible interface of curlybot. 
The Electronic Blocks are physical building blocks of a size and shape familiar to the 
target age group (LEGO® Duplo™ Primo™ blocks). The programmability and 
intelligence of the blocks has been created by placing electronics inside. Some blocks 
have sensor inputs and others have action outputs. When connected together, the output 
of sensor blocks control the input of action blocks. Logic blocks can act as intermediary 
structures to change the effect of a sensor. Any number of blocks can be stacked 
together to create a huge variety of robotic vehicles and structures that interact with the 
environment and each other. 

3.1   Functional Design 

There are three kinds of Electronic Blocks: sensor blocks, action blocks and logic 
blocks. Sensor blocks are capable of detecting light, touch and sound. Each block has 
an input attached to its upper connector and an output attached to its lower connector 
(see Figure 2). The input is off unless it explicitly receives an on signal. The input and 
the sensor are logically ORed together to produce the output. As a result when two or 
more sensor blocks are stacked in any way on an action block, any sensor input will 
trigger the action block. 

Action blocks produce some kind of output. The light block produces light, the 
sound block produces sound and the movement block is capable of motion. All action 
blocks have two connectors on top, each capable of triggering the action; both inputs 
are ORed together to produce the output. They are physically constrained by a base 
plate with no connectors so that they cannot be placed on top of another block and 
have to be positioned at the bottom of a block stack.  
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Fig. 1. The Electronic Blocks in action - a remote control car built from the blocks. The child 
has built a torch from a touch and light block (close-up on right), which is being used to trigger 
a light sensor on a motion block. 

 

OR 

Input 
from block 

above 

Output 
to block 
below 

Sensor 

 
Fig. 2. The functional implementation of a sensor block. The sensor is ORed with any signals 
from blocks above. 

Logic blocks have an intermediary role. Placed between a sensor block and an 
action block they have the ability to alter the expected action. Logic blocks provide 
users with the capability to: 

• produce an action if a particular stimulus is not received (not), 
• toggle the input so that in the first instance the stimulus from the environment will 

“turn the action on” and the second instance of the stimulus will “turn the action 
off” (toggle), 

• stretch a short signal so that the action will stay on for two seconds after the 
stimulus stops (delay), and 

• only produce an action if input signals are received simultaneously through both 
inputs (and). 

With the exception of the and block, these blocks are single connector blocks with 
an input attached to the upper connector and an output attached to the lower 
connector. The and block has two inputs and two outputs. The and block has two 
upper connectors which may receive an input signal. The block works as a logical 
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AND – it must receive an input from both connectors to produce an output. The 
output signal produced is attached to both lower connectors.  

3.2   Physical Block Design 

All sensor blocks are yellow. Readily understandable icons identify the different 
functions of the sensing blocks: for example, an eye for a seeing block. The 
functionality of the action blocks is somewhat self-evident from the physical structure 
of the blocks. The sound and light blocks are also adorned with explanatory icons. 
Each different logic block type has distinctive icons and colors to assist their 
identification. It is difficult to choose meaningful icons for these blocks. What icon 
explains “and” to a preschooler? The icons were chosen to have readily understood 
adult meanings: for example, & for “and”.  

 

 

Fig. 3. The complete set of Electronic Blocks. The sensor blocks are to the left, the logic blocks 
are in the centre and the action blocks to the right. 

3.3   Electronic Block Communication 

Electronic Blocks are designed so that there is no need for children to attach wires or 
fix connectors to enable blocks to pass signals from one to the next. Each of the 
block’s upper connector (or connectors) corresponds to a dome on the LEGO blocks. 
A block’s lower connector (or connectors) is found in the hollow at the base of the 
block. Electronic Block communication is achieved optically, allowing for imprecise 
positioning of one block on the other. 

4   Preschooler’s Interactions with Electronic Blocks 

One study of the Electronic Blocks was specifically designed for preschool children, 
aged between 4 and 5 years. This study was primarily focused on assessing the extent 
to which the Electronic Blocks allowed children to build and program simple robots. 
The study for this age-group is structured in such a way as to observe the children 
using Electronic Blocks in a natural, open-ended, free-play setting. It took place at a 
University Campus Preschool with twenty-eight children aged between four and six 
years. Fifteen of the participants were female, thirteen were male. 
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4.1   Study Procedure 

The study spanned two weeks. Three sessions per week were conducted and each 
session lasted 90 minutes. For each session the Electronic Blocks were set up in an 
area within the indoor play area. A video camera and audio equipment were used to 
record children’s interactions with the blocks. All children within the Preschool Room 
were free to participate in the study. However, due to the number of Electronic Blocks 
available, a limit of four children using the blocks at any time was imposed. The 
investigator actively participated in all evaluation sessions, providing children with 
ideas on how they might use the blocks, answering their questions, helping them to 
solve problems, and encouraged working in pairs or groups. 

Before the first of the six sessions the Preschool teacher introduced the researcher 
to the children and the intention of the study was simply explained. The Electronic 
Blocks were then demonstrated to the entire group, with the functionality of each 
block briefly explained. Initial explanations of the Electronic Blocks primarily 
focused on the sensor blocks and action blocks. The idea was to introduce participants 
to the less complex Electronic Block concepts. Children were provided with the 
opportunity to become familiar with the functionality of these blocks before moving 
on to the more complex combinations involving logic blocks. By sessions 5 and 6, the 
involvement of the researcher was reduced. While available to help them if they ask 
for assistance, the researcher did not play an active role in stimulating the children’s 
play experiences with the blocks. 

4.2   Preschool Observations 

The video of preschoolers using Electronic Blocks was examined to obtain usage 
analysis of the preschoolers’ interactions with the blocks. Specifically, the video was 
analyzed to determine:  

• the number of times each children interacted with the Electronic Blocks; 
• the duration of interactions with Electronic Blocks; and 
• the number of structures children built while using the blocks. 

This data has enabled an evaluation of the Electronic Blocks to determine whether 
they were an effective resource for robot building and programming. Specifically, the 
data has been analyzed to determine the preschoolers’ 

• patterns of usage, 
• interactions with the blocks, 
• level of involvement in building a variety of constructions, and 
• level of understanding of Electronic Block functionality. 

Patterns of Usage 
Of the 31 preschoolers who attended the preschool over the period of the evaluation, 
28 chose to participate. Fifteen of the participants were female, thirteen were male. Of 
the preschoolers who used the Electronic Blocks, 20 used the blocks on more than one 
occasion. Children on average played with the blocks between two and three times 
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during the six days of evaluation, with females visiting the blocks slightly more 
frequently (an average of 2.5 visits for the females versus 2.3 visits for the males).  

The average amount of time each child spent playing with the blocks in a single 
session was 15 minutes. Females spent an average of 12 minutes interacting with the 
Electronic Blocks in a single session, while males, on average, interacted with  
the blocks for 18 minutes in a single session. The longest time spent playing with the 
blocks in one session was 47 minutes while the shortest period of time was two 
minutes. Overall average length of visits remained reasonably consistent across visits, 
ranging between 11 and 16 minutes. 

Interactions with Electronic Blocks 
The video evidence shows that on average each child built a working block stack 
every two minutes. While one participating child failed to build anything during the 
evaluation period, other children built block constructions at an increased rate. 
Construction included adding a block or blocks to an existing stack or creating a stack 
from scratch. On average, girls created a different structure every two and a half 
minutes, and boys created one every one minute and forty seconds. It is interesting to 
note that while some children were avid builders others were content to build one 
particular structure and play with it for a long period of time. One example of note is 
where one child built a remote control car and then played with it for 15 minutes. 

In general, boys were involved in building more structures than girls. On average, 
boys built 21 structures over the duration of the evaluation while girls built 10 
structures.  The girls built, on average, five structures per visit, while the boys build 
10 structures per visit. 

There were examples where children were observed using the Electronic Block 
structures to stimulate other play. The construction of Electronic Block structures did 
not appear to be their primary activity but rather an activity which complemented 
their pretend play adventures. Another noteworthy issue concerns construction 
activities which are primarily about process rather than outcome. There were some 
children who were not concerned with the output they produced and the act of 
construction was their motivation for taking part. In these cases the children tended to 
build elaborate stacks of blocks, the largest stack consisting of thirteen blocks. The 
children were primarily involved in building interesting structures with the blocks 
with no consideration for what the outcome would be. 

Types of Construction 
The children were involved in a wide variety of construction activities using the range 
of Electronic Blocks. Analysis of the video data indicates that the movement block 
was the action block of choice. While the light block was also popular, children were 
more likely to create structures with car bases than with the other two action blocks. 
All children who interacted with the blocks created a moving vehicle at some stage in 
their construction activity. The sensor blocks appeared equally popular. Children used 
the seeing, hearing and touch blocks to activate the movement blocks, and many were 
successful at creating a “remote control” car using a seeing block attached to the 
movement block and then activating a separate light block to make the car move. This 
became very popular and for over 70% of the evaluation period at least one child was 
playing with a remote control vehicle that they had built. 
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The toggle and not blocks were used on more occasions than the other logic 
blocks. The children would often use not blocks to activate their action blocks. 
Children would use the toggle block when they did not want to keep providing an 
environmental stimulus for some action block. Some children also enjoyed using 
delay blocks but the and block was used sparingly throughout the evaluation.  

A large majority of the constructions undertaken by the children contained either 
two or three blocks. Very few structures were built which had five or more blocks. 
The addition of blocks to structures, particularly logic blocks, in some cases confused 
the children, and as the study progressed children built large stacks less frequently. 
The data captured shows that initially children were willing to build large stacks with 
four or five blocks, but this tended to drop off once children began to grasp the 
functionality of the blocks. 

4.3   Case Study: Ben and Kathy 

In addition to the usage analysis, a case study of two preschoolers using the Electronic 
Blocks has been included to highlight salient points. This case study is based on the 
preschool video footage. 

 

Ben has put a touch block and a seeing block on a movement block. He touches it to 
make it move. Kathy has built a car with a touch block on it also. She pulls the touch 
block off and as she picks up a seeing blocks she says “and an eye one”. “I need a 
torch” she says picking up a light block. Ben takes the touch block off his car and 
places it on a light block. Kathy places a touch block on top of her torch then touches 
it and checks that the light is working. She shines it at the seeing block to make her 
car move. Ben shines the torch he has made at his seeing block. His car moves.  

Kathy takes the touch block off her torch and the seeing block off her movement 
block. She moves over to the box where all the Electronic Blocks are being stored. 
“Ben, wanna see these ones?” she asks as she picks up a not block. Ben takes the 
touch block off his light block. “I’ll show you what these ones always do” says Kathy. 
She places the not block on a movement block and states, “They just make the car 
go.” The car moves across the mat.  

Ben leans over and takes the not block off the car. He tries puts it on his movement 
block (it still has the seeing block attached). “They’re a non … they’re a non block … 
they’re a non stop block,” says Kathy. The seeing block on Ben’s car has skewed 
slightly making it difficult to slip the not block on to the spare hump. Ben gives up 
trying and places it on a sound block and then on a light block.  

Kathy goes to the Electronic Blocks box and picks up a toggle block. She says to 
Ben “If you put it on it just goes and if you take it off, it stops!” illustrating her point 
by placing the toggle block on a movement block and then taking it off. The movement 
block moves when the toggle is attached. Ben picks up his torch (the not block with 
the light block) and takes it over to his car. He shines the light at the seeing block to 
make the car move. 

 

Seven of the ten types of Electronic Blocks were used in the case study. The 
children didn’t use the hearing block, the and block or the delay block. They used 13 
blocks in total, a majority of which were sensor and action blocks. The constructions 
built during the case study include: 
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• A simple input/output stack created by Ben. This stack had a car base that was 
touch activated. The inclusion of a seeing block also meant it could have been light 
activated. Later in the case study, Ben built a touch activated torch, and 
consequently has transformed this input/output stack into an interacting block 
system. 

• A simple touch activated car created by Kathy. This is an example of a simple 
input/output stack. 

• An interacting block stack built by Kathy. The first stack was a touch activated 
light and the second structure was a seeing block stacked onto a car base. 

• Two Electronic Block stacks that utilize logic created by Kathy. On both occasions 
Kathy uses a car base. In the first instance she stacks a not block on her movement 
block, on the second occasion she uses a toggle block. 

• Output blocks activated by the not block. Two such stacks (on containing a sound 
block, the other a light block) were built by Ben. 

The construction that took place in the case study is typical of the types of 
construction which took place during the Electronic Block study. Children were more 
likely to build complexity into their constructions by creating interacting block stacks 
or simple logic stacks. There were fewer examples of children building complexity 
into their constructions with the use of logic block combinations. 

5   Discussion 

Young children aged between three and six learn best while actively manipulating and 
transforming real materials. Therefore, educators argue, it is important that experiences 
with technology are empowered accordingly. Young children need to be able to play an 
active role in their encounters with technology, and in doing so develop images of 
machines and computers that they can control and program [11]. Electronic Blocks aim 
to address this issue. Unlike the computer and many other media used for technology 
education, the design of the Electronic Block allows both the input and the output to be 
physical. Of the interactive programming environments developed for use by young 
children, curlybot [10] is perhaps the only other resource in this category. However 
curlybot embodies a programming-by-demonstration while the Electronic Blocks allow 
children to create technological knowledge through constructive processes.  

5.1   Understanding Block Functionality 

The video footage provides clear evidence that the children were, in general, able to 
understand the functionality of the sensor and action blocks. The successful and 
repeated construction of working Electronic Block stacks reflects children’s 
understanding of the resource. The case study demonstrates that both Kathy and Ben, 
for example, have a solid understanding of the ways in which sensor and action 
blocks work and the ways in which such stacks can be built to interact not only with 
the environment but also with each other. Of the twenty-eight children involved in the 
Electronic Block evaluation, only two failed to gain an understanding of the 
functionality of the sensor blocks and the action blocks. One of these children was 
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content to watch others building with the blocks, while the other only built one 
Electronic Block structure. 

The data presented provides evidence that the children felt most comfortable using 
sensor and action blocks to create simple structures, of both a stand-alone and 
interacting nature. Children mostly used logic blocks in simple stacks with an input, 
an output and the logic block in between. Not and toggle blocks were primarily used 
to support the construction of interacting block stacks. 

Despite the successes children had in creating working sensor-action constructions, 
there are examples of misconceptions in this area. The most common error involved 
children trying to get an action block working without a sensor or logic block 
attached, or children trying to trigger a sensor block attached to an action block with 
an inappropriate signal. The investigator constantly stressed to the children the need 
to have a “yellow block” (a sensor block) in their stack. On numerous occasions 
during introductory sessions, the children would expect an output block to work 
without any, or with incorrect, input. The concept of inputs and outputs and the idea 
that the behavior of the action block is reliant on some signal from a sensor or a logic 
block caused children the greatest difficulty in their construction activities. Once the 
children understood this concept they were able to build any number of exciting 
creations and for those creations to exhibit the desired behaviors. 

Fifteen of the twenty children who interacted with the blocks on more than one 
occasion became engaged in using the logic blocks, with the not and toggle blocks 
being used extensively during the evaluation. The not blocks were useful in that they 
created more action than they stopped, making more dynamic and interesting 
creations. Kathy introduced the not block to Ben in the case study. Her explanation 
and demonstration of its behavior indicated some understanding of the functionality 
of the not block. The toggle blocks were set up as effective on-off switches. 

Many of the children struggled with the functionality of the logic blocks. Towards 
the end of the case study Kathy used a toggle block to make a car go without a sensor 
block. This worked in this instance because the toggle block was “switched on”. This 
is not always the case. Kathy’s corresponding comments indicated that she did not 
understand that sometimes the toggle block would be “off”. The case study provides 
an insight into the difficulties that preschool children sometimes had when using the 
toggle block. The toggle block can be in one of two states: on or off. A child can’t tell 
by just looking at the block which state the toggle is in. Only by observing the 
behavior of an action block that has a toggle block attached can the state of the toggle 
be determined. There was only a few examples of children showing clear understand-
ing of the functionality of the and and delay blocks. 

5.2   Play and Electronic Blocks 

The Electronic Blocks study showed that children were interested in interacting with 
the blocks and enjoyed doing so. Time spent playing with the blocks reflected this 
interest and enjoyment. Significantly, the children remained interested in the blocks 
for the duration of the study. The study data highlighted the flexibility of the 
Electronic Blocks and their ability to appeal to children with different ability levels, 
interests and interaction styles. Many children appeared to become strongly engaged 
in Electronic Block activities. They were excited about the cars they were able to 
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make move, the remote controls that they built to do so without direct contact with the 
vehicle, and the torches they were able to create with a light block and some kind of 
sensor input. It appeared that the children’s enjoyment primarily stemmed from their 
ability to create their dynamic systems which interact with the physical world. 

6   Conclusion 

The Electronic Blocks were designed to address the challenge of developing a 
technology to allow preschool children the experience of constructing artificial agents, 
while addressing the unique needs and abilities for children of preschool age. The 
preschool study has shown that the Electronic Blocks interface is well suited to the 
needs of young children. Children are free to autonomously explore the functionality of 
the blocks as the complexity of the implementation is hidden from them.  

Interaction with the Electronic Blocks primarily utilizes unstructured exploratory 
learning. Children’s interactions with the blocks are best categorized as play. This 
play operates at several levels – the programming of a robot through a construction 
activity, the use of that agent in a variety of pretend play situations, and the ongoing 
creative revision of that agent. The Electronic Blocks are a resource which young 
children use to design, build and evaluate a large variety of robotic artifacts. They 
become creators of technology. In the process children become involved in 
meaningful technology education.  
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Abstract. Larger fields in the Middle-size league as well as the effort
to build mixed teams from different universities require a simulation en-
vironment which is capable to physically correctly simulate the robots
and the environment. A standardized simulation environment has not yet
been proposed for this league. In this paper we present our simulation
environment, which is based on the Gazebo system. We show how typi-
cal Middle-size robots with features like omni-drives and omni-directional
cameras can be modeled with relative ease. In particular, the control soft-
ware for the real robots can be used with few changes, thus facilitating
the transfer of results obtained in simulation back to the robots. We ad-
dress some technical issues such as adapting time-triggered events in the
robot control software to the simulation, and we introduce the concept
of multi-level abstractions. The latter allows switching between faithful
but computionally expensive sensor models and abstract but cheap ap-
proximations. These abstractions are needed especially when simulating
whole teams of robots.

1 Introduction

In several RoboCup leagues proposals for simulation environments have been
made (e.g. [1,2,3]). In the Middle-size league (MSL) there exist a variety of dif-
ferent simulators. Nearly every team has implemented a simulation environment
which is tailored to specific needs like the hardware platform in use, and the
research focus of the particular team. Some teams are interested in high-level
simulations, for instance to deploy reinforcement learning, others simulate low-
level algorithms for localization, or vision, and others try to model prototypes for
hardware developments in a simulation environment. Because of this diversity,
the re-use of a simulator by another team is difficult, if not impossible.
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As the soccer fields in the MSL become larger (the size doubled compared to
last year’s competition) only very few teams can afford a full-size soccer field
to test the robots and their behaviors. The number of players allowed per team
was increased to six. To build and maintain a whole team of six robots will be
hard for many teams. Further, the Technical Committee fosters the building of
mixed teams and the team strategy of the mixed teams must be coordinated. A
commonly accepted simulation environment which is able to satisfy the different
needs of the teams and which is moreover able to simulate two teams of robots
in a physical correct way will be of much more importance in the MSL in the
coming years.

In this paper we propose a simulation environment for soccer robots in the
Middle-size league. We envision a Middle-size simulation league where two teams
can play simulated matches against each other with minimal changes to the
original control software yielding realistic results. Our proposal founds on the
3D rigid physics simulation Gazebo. We briefly introduce the Gazebo framework
and then show how on top of this a full simulation environment for the MSL
can be developed, which allows for realistic simulations of low-level algorithms
working on sensor data including image synthesis up to the strategy of a whole
team of six robots. We discuss models for some of the most important sensors
and actuators. The key to simulate whole games is the concept of multi-level
abstraction, which we present at the end of the paper.

The rest of the paper is organized as follows. Section 2 introduces Gazebo
and Player. Section 3 discusses other approaches to the simulator problem for
RoboCup and argues why Gazebo is a good choice for our purposes. In Section 4
we sketch our models for realistic omni-drives, omni-directional cameras with re-
alistic distorted images, and directed cameras on pan/tilt units. We also briefly
address the accuracy of the simulation by comparing a differential drive in sim-
ulations with real data. In Section 5 we address the problem of how the robot
control software must be adapted to fit to the simulation wrt. timing issues and
introduce the concept of multi-level abstractions. Then we conclude.

2 Gazebo and Player

Our simulation environment relies on the simulator Gazebo [4] and the robot
control server Player [5]. Gazebo is a 3D simulator and makes use of the freely
available and constantly improving physics engine ODE [6]. Since Gazebo em-
ploys OpenGL for rendering of the simulated camera images sophisticated al-
gorithms for rendering photo-realistic images might be integrated into Gazebo.
Furthermore, Gazebo features a nice graphical user interface that allows to moni-
tor the simulated world, inspect the current sensor readings and send commands
to the actuators of the robots.

In Gazebo the simulation world, that is the 3D environment as well as the
robots, is defined by means of a configuration file. Fig. 1 shows an example for
the definition of one of our robots including a SICK laser range finder and a Sony
camera on a pan-tilt unit. The positions of the devices are defined relative to
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the robot’s coordinate system. Further parameters, e.g. the update frequencies
of the laser scanner, can be specified.

The model file in Fig. 1 relates physical models to each other. The physical
models are defined as C++ classes that describe the geometrical structure of

<model:RCBot>

<id>bot1</id>

<xyz>0 0 0</xyz>

<updateRate> 25 </updateRate>

<model:SickLD>

<id>laser1</id>

<xyz>-0.131 0 0.101 </xyz>

<scanRate> 20 </scanRate>

</model:SickLD>

<model:SonyD100>

<id>front1</id>

<xyz>0.1 0 0.325</xyz>

</model:SonyD100>

</model:RCBot>

Fig. 1. Excerpt from a world-file

the device, how sensor data are gen-
erated, and how data and commands
are exchanged with external applica-
tions. A model can describe a physical
object that possibly integrates a sen-
sor or actuator. Since ODE is a rigid
body simulator models have to be de-
scribed in terms of those (which is suf-
ficient for a robot simulator). Rigid
bodies can be connected to each other
by means of several different types of
joints. Actuators are modeled by ap-
plying forces on those joints.

The Player network protocol [5] al-
lows to exchange data and commands
with a robot and is designed in a
device-independent fashion. The com-
munication between server and clients makes use of several task-specific inter-
faces (e.g. a camera interface to retrieve images). Device-dependent drivers are
required for the communication with the hardware. Libraries, implementing the
Player network protocol, exist for various programming languages. Since Player
only defines the protocol and does not impose a certain architecture on the
control software it can be easily integrated into an existing control software.

3 Why Gazebo Is a Good Choice for the MSL

In the last decades a large number of robot simulators have been developed. Due
to the considerable variation of application requirements of those simulators not
all of these approaches are equally well-suited for providing a close-to-reality run-
time environment for the control software. In the following we focus on a couple
of selected characteristics of robot simulators and discuss related approaches
under this aspect.

A (computer) simulation always constitutes an abstracted view of the system
that is to be examined. Relating to robot simulators the level of abstraction
ranges from representing a robot as a dot in a two-dimensional world (e.g. M-
ROSE [7]) to simulators that attempt to physically correctly simulate the robot,
its sensors, and all other objects in the simulation world. The latter kind of simu-
lators are so-called high-fidelity simulators. Since we intend to use the simulator
not only as a test-bed for the high-level decision making components we require
a high-fidelity simulator.
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Simulators that have an integrated physics engine compute the motion dy-
namics of the robot according to the physical properties of the models (e.g. its
mass, the friction coefficients of surfaces, etc.). This means that the simulation
model, the mathematical model on basis of which the progression of the simula-
tion is computed, are the laws of physics. Other robot simulators rely on kine-
matic (e.g. SimRobot [8]) or probabilistic motion models (e.g. M-ROSE [7]). The
probabilistic motion models are computed from observations that describe how
the position of the robot changes as a reaction to certain movement commands.
Most modern robot simulators are based on physics engines (e.g. USARSim [1],
ÜberSim [2], Webots [3]) since they deliver very realistic results without the need
for extensive evaluation of the real robots in order to get a proper kinematic or
probabilistic motion model.

Another characteristic of a robot simulator is how the control software is cou-
pled with the simulator. A very tight coupling is realized by SimRobot [8] which
directly integrates the controller for the robot into one binary with the simu-
lator itself. Most simulators provide interfaces that allow external applications
to communicate with the simulated robots. Still, the control software might be
integrated into the simulation loop as it is the case for the Simulation league
RoboCup Soccer Simulator [9]. It is based on the Spark simulator framework [10]
which integrate the Spades middle-ware [11]. Spades implements the so-called
software-in-the-loop architecture. Its approach is to notify the control software
when the simulation of a frame is finished, give it some time to do its com-
putation, and then proceed with the simulation. This does not correspond to
the situation in the real world where the environment changes while the control
software is deciding what action to take next. Only loosely coupling the control
software and the simulator corresponds to the realistic model since the simula-
tor progresses without taking care of the control software—it is the task of the
control software to keep up with the simulation speed.

Some robot simulators are specialized on certain types of robots and/or sce-
narios and cannot (easily) be extended (e.g. the UCHILSIM simulator [12] only
simulates the Sony Aibo robots and the RoboCup Soccer Simulator is specialized
on simulating soccer games). For the configurable, multi-purpose simulators it is
interesting in which way robots and other objects in the simulation world can be
defined. In Übersim, for instance, the objects in the simulated world are made up
of basic primitives which can be combined and parameterized in a configuration
file. Gazebo on the other hand requires to actually program most parts of the
models. The advantage of the first approach is that the simulated world can be
changed without the need to recompile, but the latter approach admits the user
the chance to bail out the full expressiveness of a programming language for the
description of the models.

Currently, there are several robot simulator that meet our requirements. In
particular, these are USARsim, Webots, Übersim, and Gazebo. USARsim is the
simulator for the RoboCupRescue simulation league and is based on the Unreal
Tournament game engine. Consequently, it features a high-quality rendering en-
gine, a high overall stability, an integrated physics engine, and several tools
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for comfortably editing the simulated worlds. USARsim also supports Player.
Übersim was primarily developed as a simulator for the small-size league and
was later enhanced to serve as a simulator for vision-centric robots. It has been
successfully used to simulate a self-stabilizing two-wheeled robot but it seems not
to be actively worked on at the moment. Webots is a commercial product and
contains besides the actual simulator a large library of hardware components for
robots that can be integrated into the simulation and allows for certain types
of robots to directly transfer software developed within the simulation to the
robot.

In the end we opted for Gazebo because it is available under an open source
license, comes with a viable documentation, is actively maintained, and sup-
ports the open network protocol Player. Also, Gazebo proved to be capable of
simulating complex robots in realistic environments (cf. [13]).

4 Physical Modeling

Gazebo comes with a set of standard robot and sensor models. Robots like
the RWI B21, the Pioneer 2AT, or sensors like the SICK LMS 200 laser range
finder are already modeled. Gazebo follows an approach on the middle ground
between fully scripted and fully implemented physical models. The geometry,
mass distribution, friction, etc. of parts have to be programmed. From the basic
models the robot’s appearance and the position of devices are defined using an
XML script as presented in Fig. 1.

Important for the MSL is to have basic models of commonly used actuators
and sensors. Most importantly for the MSL is a model for an omni-drive and for
an omni-directional camera. Unfortunately, such models are not built-in models
of Gazebo, and especially these models are problematic in many other simulation
environments. However, these models are not too difficult to model in Gazebo
and we developed models for an omni-directional and a differential drive as well
as for omni-directional cameras. These models can be used as a prototype im-
plementation and easily adopted to other robot platforms. Fig. 2(a) shows the
models of different drives. The left image shows two of our differential drive
robots on an MSL soccer field; the right image shows our model of a prototyp-
ical omni-directional drive. The model of the omni-wheel constitutes a realistic
description of the actual mechanics of the wheel, i.e. the small rollers are con-
nected to the center wheel by means of rotational joints. Tricks like omitting the
definition of the rollers and setting the friction coefficient of the center wheel to
zero along the direction of the axle are not needed.

Fig. 2(b) shows images from our directed camera (left side) and our omni-
directional camera (right side). The implementation of this model is based on
the cube-mapping technique. Images of the environment are mapped to the faces
of a cube; this texture can then be applied to the surface of a three-dimensional
object—in our case a mesh object resembling the surface of a hyperbolic mirror.
The realism of the synthesized images was further improved by integrating focal
depth and shadow mapping (which can be observed in Fig. 2(a)).
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(a) Models of a soccer-field and robots with differential drive (left)
and a prototype for an omni-drive robot platform (right).

(b) Simulated camera images of a directed and an omni-directional
camera processed by the vision modules.

Fig. 2. Our Gazebo models for MSL robots

Since the simulation is based on a physics engine (ODE in our case) informa-
tion about the dimensions and mass of the robot and its components have to be
defined in the model. The more precise this information is the more realistic the
results of the simulation will be.

In general, it is quite challenging to exhaustivelymeasure the degree of realism of
a simulation of a robot because it requires the knowledge of ground truth in the real
world in order to compare virtual and real robots. To acquire some means about ac-
curacy and quality of our simulation framework, we conducted several experiments
comparing the simulation models with the real behavior of the robot components.
An example for one of those experiments can be seen in Fig. 3. It compares the
acceleration behavior of the the real robot (Fig. 3, left) and the simulated robot
(Fig. 3, right) given a certain target velocity (the red line). Since, in our case, the
parameters of the PID controller implemented in the real motor controller DSP
were unknown we conducted the tests for several different parameter sets.

Regarding the quality of the simulated camera images (Fig. 2(b)) one first
has to note that the markings of the ball stem from the vision algorithms which
we use on our real robots. The vision software was used without any changes.
The simulated camera images obviously differ from real camera images but the
vision recognition modules yielded satisfactory result.

Finally, we tested the model of the SICK LD scanner. Gaussian noise is added
to the exact distances such that the variance of the real device is met. The results
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Fig. 3. These graphs compare how the real and the simulated robot react to a linear
increase in the target velocity (the red lines). On the left, the actual velocities of the
real robot are shown for several runs. The actual velocities of the simulated robot are
shown for different parameter sets for the PID controller.

of our localization and collision avoidance algorithm which rely on the range data
showed a good approximation of reality.

5 Connecting the Control Software

In this section we describe which changes are necessary to connect a control
software to the simulator and show that the adaptations are only limited to
the low-level hardware drivers and timing components. In other words, a control
software designed for a real robot can be refitted quite easily (Sect. 5.1). Further,
in Sect. 5.2, we introduce a concept that allows to simulate the robots on more
abstract levels which is desirable for multi-robot scenarios, e.g. a robot soccer
game. For reasons of space we can only roughly outline the concept and not give
any technical details of how this concept manifests in the implementation of the
robot’s model.

The architecture of our simulation environment follows the client/server con-
cept. The simulation server runs the simulator and a separate instance of the
Player server for each simulated robot. Each robot is controlled by an instance of
the control software which can be spread over several machines; these are called
the simulation clients.

The general approach to integrate a Player client into an existing control soft-
ware is to replace those parts of the system that are directly communicating with
the robot’s hardware by the appropriate functions provided by the client library
to access the respective component in the simulation, i.e. instead of requesting a
camera image from the frame-grabber an image is obtained from the simulated
camera. Before data can be exchanged with the simulation server a connection
to the Player server has to be established which is usually done once during the
initialization of the control software.

Our control software consists of numerous, asynchronously running modules
communicating by means of a central blackboard. Those modules are embed-
ded into a hierarchy that defines which modules directly exchange data and/or
commands with one another. The lowest level of this hierarchy comprises the
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modules that interact with the hardware components of the robot. According to
the approach proposed above we implemented new modules that communicate
with the simulation and these are started instead of the real drivers. Replacing
the low-level modules was sufficient to provide the control software with the
necessary input data and the capability to send commands to the actuators (the
images in Fig. 2(b) for instance are the output of the unchanged image pro-
cessing routines). In our experiments it showed that opening one connection to
the Player server for each module separately produced too much overhead and
slowed down the simulation server noticeably. The solution is to open only one
single connection to the simulation server which is then shared by all modules.
We remark that connecting a monolithic control software to the Player server
would have been even easier.

5.1 Synchronization

Low-level as well as high-level components of a control software often use time
and duration as part of their decision-making. Thus, time may have a major
influence on the behavior of the robot. As a consequence, all timing related
issues have to be handled w.r.t. the simulation-time instead of the real-time
clock. This guarantees that temporal intervals are computed correctly.

In a robot control software it is quite usual that certain events are triggered
at regular intervals like grabbing a camera image and processing it. When a sim-
ulated robot is controlled, the problem arises that the simulation may progress
at a non-uniform speed. This means that the interval timer which triggers the
event cannot be set to a constant interval time. Instead the interval time has
to be adapted to the current simulation speed. Reasons for the changing simu-
lation speed are that in certain situations more computations are necessary to
determine the successor state. For example, collisions of objects lead to such
situations.

The step-time is the time by which the simulation is progressed in each step.
The ratio of the step time and the time it took to compute the last step is called
the instantaneous simulation speed. As it can be seen in Fig. 4 the instantaneous
simulation speed varies considerably and, consequently, it is impossible to ob-
tain an accurate estimate of when the simulation-time will have increased by a
certain amount of time. As a remedy we compute the estimate for the current
simulation speed as the average over a history of fixed length of past instanta-
neous simulation speed values. In Fig. 4 the results of averaging over histories of
different length are depicted. The estimated simulation speed is used to predict
how long it takes to progress the simulation by a certain amount of time. Interval
timers triggering certain events are then set accordingly.

As expected the accuracy of the prediction decreases with an increasing length
of the interval. We tested intervals of lengths between 10 msec and 500 msec.
For intervals between 10 msec and 100 msec (which are the most commonly used
intervals in our control software) the average prediction error lies within a range
of less than two percent of the interval length; for intervals between 150 msec
and 500 msec the average prediction error is still less than four percent.
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Fig. 4. The graph shows the erratic characteristics of the instantaneous simulation
speed (the red line) and the results of smoothing over 5, 10, 20, and 50 consecutive
instantaneous simulation speed values

In order to gain a resolution of the clock higher than the step-time of the
simulation we extrapolate the simulation time between two consecutive updates
taking into account the current estimate of the simulation speed.

Since in our control software there exists a single component that handles all
timing related issues it was sufficient to exchange the low-level modules and to
extend this time component such that it can provide the current simulation time
and estimate the current simulation speed—the rest of the control software runs
unchanged in the simulation environment.

5.2 Multi-level Abstraction

Simulating the robots on a device level, i.e. simulating the output of the real
sensors, allows the complete control software (except those components that
communicate with the hardware) to be tested with a simulated robot. Although
this definitely is one of the objectives for the simulation environment, it would
be helpful, in certain situations, to also have a more abstract simulation of the
robots, for example, if a high-level concept should to be evaluated but lower level
components providing appropriate input data are not (yet) available.

Usually, the way how the processing of sensor data is managed in a robot
control software is the following. In a first step the sensor readings are aggregated,
then relayed to one or several other components which take this data as input.
The output of those modules might be forwarded to other components that do
some further processing, and so on.

This is exactly where the concept of multi-level abstraction applies. Instead of
simulating sensor readings the input data of higher-level components is directly
provided by the simulation (cf. Fig. 5(a)). What kind of information that is
depends on the component and on the kind of input data provided by lower-
level components, respectively.

By selecting a higher abstraction level for a sensor it becomes unnecessary to
run those components that normally generate the input data for a certain high-
level component on basis of the sensor readings obtained from sensors since it is
now simulated directly. This implies that high-level components can be tested
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Fig. 5. (a) General idea of the concept of Multi-level Abstraction. Example: Suppose
the sensor is a pan-tilt camera. Then P1 aggregates images from the camera and trans-
lates pan-tilt commands into the camera’s protocol. P2 is a vision recognition module
and provides information about the detected objects to P3. P2 might receive commands
like “Search for object X in the images!” or “Look at world point (x, y, z)!”. (b) In this
example it is not reasonable to shift the functionality of the collision avoidance module
to the server side in a higher level of abstraction since the computational complexity
is not reduced despite of complete world knowledge.

and evaluated completely independent of the lower-level components. More pre-
cisely, the error-rate of the input data for a high-level component can be con-
trolled directly. Usually, the input data of a high-level module is quite easy to
compute given the fact that ground truth is known in the simulated world. The
error-rate is then adjusted by adding noise to the absolutely correct data. A side-
effect of not simulating raw sensor readings is that the computational complexity
can be reduced because simulating realistic sensor readings and processing those
data on the client-side, both rather expensive, can be omitted in a high-level
simulation. High-level sensors not only have to generate high-level information.
Also, they have to accept commands issued by the high-level component which
they directly provide input data to. This is because those commands possibly
lead to a change in the simulated world that affects the provided information,
e.g. the visibility of an object depends on the viewing direction of the camera and
thus a high-level pan-tilt camera has to accept pan-tilt-commands. A complete
example is given in Fig. 5(a).

It has to be noted that it is not reasonable for every component to shift its
functionality to the simulator in a high-level simulation. For instance, suppose
the laser distance readings are processed by the localization component as well as
by the collision-avoidance component as it is depicted in Fig. 5(b). A high-level
simulation of the laser may provide the output of the localization component
directly but it is of no advantage to also simulate the workings of the collision-
avoidance component. This is because the knowledge about ground truth in the
simulated world does not reduce the computational complexity for the problem
of collision-avoidance—the same algorithms as in the control software would
have to be implemented for a simulation of the collision-avoidance component.

The concept of multi-level abstraction as we implemented it opens up new pos-
sibilities for testing high-level components in a realistic environment. It has to
be noted that even in a high-level simulation all the advantages of the integrated
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physics engine are still desirable (e.g. correct motion dynamics, collision detec-
tion, etc.). The reduction of the computational complexity comes in handy if
the simulator or the control software have to be started on a slower machine
or a greater number of robots is to be simulated simultaneously. Especially the
rendering of simulated camera images is very expensive and consequently doing
a high-level simulation of the cameras leads to a considerable increase of the
average simulation speed.

Our implementation allows to select the abstraction level for every instance of a
model separatelyand thus simulationswithmixed levelsof abstractionarepossible.

6 Conclusion

The simulation environmentwe presented allows to realistically simulate robots on
a device level. We successfully modeled omni-directional drives and integrated new
rendering techniques intoGazebo that allow to simulate images of omni-directional
cameras on the one hand, and on the other hand increase the realism of the rendered
images by adding shadows and focal depth to the images. Thus, all components
typically built into robots of the middle-size league can be simulated.

We presented the concept of multi-level abstraction. The idea is to simulate
the robotic system on different abstraction levels. If the task is to develop low-
level modules like navigation or localization algorithms, a low level of abstraction
is needed. In that case one simulates the robotic system in great detail with
the down-side of a more complex simulation (for example, when images have
to be rendered). Here, the simulation environment gives precious information
how the implemented algorithm work in a near-to-reality environment. Since
only minimal and especially no structural changes are necessary to make an
existing control software control a simulated instead of a real robot, the transfer
of software developed with the simulation to a real robot is facilitated. Due to the
standardized network protocol Gazebo can be exchanged by the 2D simulator
Stage [5] effortlessly, where, for instance, learning tasks with more than real-time
can be performed.

Following our vision that the simulation framework presented in this paper
could serve as a standard simulation environment for the MSL where whole
matches are simulated, one clearly needs a higher level of abstraction. Simulating
on a behavior level, raw images do not have to be synthesized. In a real game,
usually, this information is not logged either.

In the future we want to extend our framework with an automatic referee
similar to the Simulation league. This sets the prerequisite to simulate whole
games in a realistic way and with this establishing a Middle-size Simulation
league, so to say. This should not be seen as a supplement for real games. It
should give a means to increase the quality of the games at competitions. On
the other hand, with such a standardized simulator the quality of research in the
field of RoboCup is increased as the simulator can provide (simulated) ground
truth data. Regarding Gazebo as the underlying engine we remark that we do
not claim that this is the only possible choice for an MSL simulator. Gazebo just
turned out to be very well suited to tackle this problem.
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As another, more technical issue for future work, one weakness of the sim-
ulator must be addressed. For very large multi-robot simulations the (single)
server/(multiple) clients architecture of the simulation environment does not
scale too well. The problem lies in the fact that the simulation at present cannot
be distributed. Therefore we intend to enhance the simulator such that it al-
lows distributed simulations. In a first step it is planned to integrate distributed
rendering into the simulator since image synthesis is one of the most expensive
parts of the simulation.

While we focused on the MSL in this paper, it was shown that soccer and ser-
vice robotics as well as service robotics and Gazebo can be married successfully
as the example of [14,13] shows. Thus, the scope of our framework ranges much
beyond Middle-size league soccer playing.
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Abstract. In this article the classical self-localization approach is improved by 
estimating, independently from the robot’s pose, the robot’s odometric error and 
the landmarks’ poses. This allows using, in addition to fixed landmarks, dynamic 
landmarks such as temporally local objects (mobile objects) and spatially local 
objects (view-dependent objects or textures), for estimating the odometric error, 
and therefore improving the robot’s localization. Moreover, the estimation or 
tracking of the fixed-landmarks’ poses allows the robot to accomplish successfully 
certain tasks, even when having high uncertainty in its localization estimation (e.g. 
determining the goal position in a soccer environment without directly seeing the 
goal and with high localization uncertainty). Furthermore, the estimation of the 
fixed-landmarks’ pose allows having global measures of the robot’s localization 
accuracy, by comparing the real map, given by the real (a priori known) position of 
the fixed-landmarks, with the estimated map, given by the estimated position of 
these landmarks. Based on this new approach we propose an improved self-
localization system for AIBO robots playing in a RoboCup soccer environment, 
where the odometric error estimation is implemented using Particle Filters, and the 
robot’s and landmarks’ poses are estimated using Extended Kalman Filters. 
Preliminary results of the system’s operation are presented. 

1   Introduction 

Localization is a key feature of a mobile robotic system, which has been deeply 
investigated over the last years. Commonly a localization module is expected to filter 
two sources of error: (i) observational errors that are produced by the imperfections of 
the sensors and their models, and (ii) odometric errors that are produced by flaws in 
the modeling of the actuators and by events that are very difficult to model as slipping 
and collisions. It is not the aim of this paper to compare or to analyze different 
localization methods -as it is a very largely discussed matter- but to discuss how to 
improve the localization process. 

Existent localization approaches filter simultaneously both sources of error, 
observational and odometric, making use of what we call global information, 
perceptions of objects with fixed and known global pose. However, we believe that, in 
addition to the global information, additional sources of information, what we call local 
information, can be exploited by localization methods. We use the word “local” in its 
temporal and spatial meanings. Spatially local information corresponds to information 
                                                           
∗ This research was partially supported by FONDECYT (Chile) under Project Number 1061158. 
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that is only useful in a reduced region of the space, while temporally local information 
corresponds to information only valid in a short period of time. Temporally local 
information corresponds mainly to mobile objects, whose poses’ estimates are valid for 
a short period of time. Spatially local information corresponds mainly to view-
dependent objects or textures, whose perceptions are valid in a reduced neighborhood. 
The spatially restricted utility may be at least due to three reasons: (i) the object is only 
observable from a restricted region of the space, for example a design in the floor or a 
visual feature or detail only perceptible from close positions, (ii) its appearance changes 
from different points of view (most of the natural objects do not have a radial symmetry 
and also non isotropic light may make them appear different from different points of 
view), and/or (iii) several identical -or difficult to distinguish- objects are present in 
different places in the space, which could easily lead to confusion, for example, a tree in 
a forest, a tile or texture in the floor, or a chair in a classroom. SLAM approaches can 
deal with objects locally observable or with non-symmetric appearance by creating and 
maintaining a pose estimate for each of them, or of their different appearances treated as 
different objects. However, this could lead a system to maintain millions of estimates, 
which is computationally infeasible and practically senseless. Nevertheless, it is possible 
to think in a SLAM-like approach that maintains locally relevant information with the 
purpose of estimating the odometric error. We believe such an approach is more 
biologically inspired. For instance, humans are able to correct their odometry even when 
they have no knowledge of the environment. 

In this context we propose improving the classical self-localization approach by 
estimating, independently from the robot’s pose, the robot’s odometric error and the 
landmarks’ poses. This allows using, in addition to fixed landmarks, dynamic 
landmarks such as temporally local objects (mobile objects) and spatially local objects 
(view-dependent objects or textures), for estimating the odometric error, and therefore 
improving the robot’s localization. Moreover, the estimation or tracking of the fixed-
landmarks’ poses allows the robot to carry out certain tasks, even when having high 
uncertainty in the localization estimation. This is especially valuable when performing 
attention demanding tasks, like pursuing a ball, which forbid the use of active vision 
in order to get more (standard) landmarks’ perceptions. Another nice feature of the 
proposed system is that the robot is able to correct its odometry even when it is totally 
lost. The latter ability may be useful in several situations as for example, when 
shooting the ball to a recently seen goal, by correcting the relative robot’s pose 
estimation with only observations of the ball. In this sense, we believe our approach 
also goes in the direction towards performing tasks with much less use of global 
localization, as certainly humans do. 

Furthermore, the estimation of the fixed-landmarks’ pose allows having global 
measures of the robot’s localization accuracy, by comparing the real map, given by 
the real (a priori known) position of the fixed-landmarks, with the estimated map, 
given by the estimated position of these landmarks.  

Based on the described new self-localization approach, we propose an improved 
self-localization system for AIBO robots playing in a RoboCup soccer environment, 
that implements odometric error estimation using Particle Filters, and robot’s and 
landmarks’ poses estimation using Extended Kalman Filters.  

How and when to select spatially local observations as valid landmarks is a topic not 
addressed in this article. In the current implementation we consider temporally local 
observations, mobile objects, such as the ball and robot players in a soccer environment. 
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This paper is organized as follows. In section 2 is presented some related work. 
The improved self-localization approach is described in section 3. In section 4 some 
features of the proposed approach are discussed. In section 5, preliminary results are 
presented. Finally, in section 6 some conclusions and future work are given. 

2   Related Work 

Standard Bayesian-based robot self-localization fuses odometric information with 
perceptual information coming from different sensors. Thus, odometry is employed for 
predicting the next robot pose state using a cinematic model of the robot, while 
perceptual information from landmarks is employed for correcting this prediction using 
an observational model. For implementing these two steps, the most employed Bayesian 
filters are Kalman [6] and Particle Filters [3][5]. Kalman Filtering is a very well-known 
technique for parameter estimation, whose main drawback is the linearity and 
Gaussianity assumptions. EKF extends the Kalman Filtering idea by linearizing the 
measurement and plant (in this case the robot) models, but still has the assumption of 
Gaussianity [4]. On the other hand, particle filters overcome the drawbacks of assuming 
linearity and Gaussianity, by implementing a “factored sampling” of the processes’ 
conditional densities [5]. Particle Filtering is very popular in the Computer Vision 
community where the most employed implementation is called Condensation [5], while 
in the mobile robotics community the most used implementation is the Monte Carlo 
Localization – MCL algorithm. However, particle filters have an important drawback: 
their performance depends strongly on the number of particles. In specific applications as 
robot soccer, in which the computational resources are limited, the number of employed 
particles may not be very high (normally between 50 and 200), and therefore particle 
filters do not clearly outperforms EKF. As a fact, in the RoboCup soccer leagues 
successful teams use either EKF, MCL, or mixtures of both (see for example [8] or [9]). 

Nevertheless, it is not our intention to analyze or to compare different Bayesian filters 
and their application to the robot self-localization problem, but to improve the standard 
Bayesian-based robot self-localization by including new independent stages for estimating 
the robot’s odometric error and the landmarks’ poses. To the best of our knowledge this 
idea is novel, and has not being implemented before in robot localization systems. 
Although decoupling the odometry estimation from the landmark position estimation has 
been proposed in the SLAM literature [10], there is a strong implicit assumption in these 
works, which is that all the landmarks will remain static forever. In some SLAM 
approaches detected objects are tracked and characterized as mobile or static [11]. 
However the mobile object’s information is not used for estimating the odometric error. 

In visual odometry approaches (see for example [12][13]) local visual features (e.g. 
Harris or SIFT features) are employed for estimating the robot relative movements (the 
odometry) by detecting and matching the features between consecutive frames. The 
main differences with our approach are: (1) In our approach the estimated odometry is 
used in the robot localization process, and also for updating the high-level tracking of 
landmarks. Traditional visual odometry approaches do not include high-level tracking of 
landmarks, therefore the use of the estimated odometry is much simpler; (2) Visual 
odometry approaches use local features, while in our case high-level fixed or moving 
landmarks are employed (e.g. a ball or a goal in a soccer environment). We believe that 
using high-level landmarks is more robust because: (i) local features cannot be detected 
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in any environment or moment (e.g. in a robot soccer carpet no local features can be 
detected), and (ii) when analyzing images corresponding to real-world environments the 
process of matching local features can produce a larger number of false matches (due to 
shadows, highlights, symmetry problems, too many detected features, etc.) than the one 
of matching high-level features. 

3   Proposed Self-localization Using Landmarks’ Tracking and 
Odometry Error Estimation 

As already mentioned, the basic idea of the proposed approach is to estimate, 
independently from the robot’s pose, the robot’s odometric error and the landmarks’ 
poses. For achieving this two new processes are included: High-Level Tracking  
(HL-Tracking module) and Odometry Error Estimation (OEE module). As can be 
observed in figure 1, the operation of all modules is tightly interconnected. First, in the 
HL-Tracking module the pose of the observed landmark ( x l*,k

−− ), either static or mobile, 

is early predicted using the odometry information ( u k−1). Then, the odometric error 
( ek ) is estimated in the OEE module using the information of current observations 
(coming from Vision) ( zk ), and the corresponding landmark’s early estimated pose. 
Afterwards, in the HL-Tracking module the estimated odometric error is used for 
estimating the new landmarks’ poses ( {x li ,k }). Finally, the corrected odometry and the 

landmarks’ poses are employed for estimating the robot’s localization ( xR,k ). 

In the next sections the operation of all modules is described in detail for the case 
of a RoboCup four-legged environment using AIBO robots. The pseudo code and 
equations are detailed in tables 1-3. 

 
 

Fig. 1. Block diagram of the system. Two stages are added between vision and localization: 
HL-Tracking and Odometry Error Estimation. 
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3.1   Vision 

Our vision system (RoboCup four-legged league scenario) is based on color segmentation 
of the images, and rule based perceptors for the relevant objects (ball, robots, beacons and 
goals) (see detailed description in [1]). The vision system also includes a recently 
proposed context filter, which takes into account the coherence between current and past 
detections, as well as scene and situation contexts, to filter incoherent detections [2]. 

3.2   HL-Tracking 

In this module the state of every detected and coherent object/landmark ( x li ,k ) is 

tracked (estimated). For the fixed objects, the state corresponds to their 2D pose, relative 
to the robot, for the mobile ones, a relative velocity is also added (see figure 2). The 
pose of any object includes a 2D position, and may include a relative orientation, if this 
is distinguishable (for objects with radial symmetry as ball and beacons it is not possible 
to notice their orientation). 

The current implementation of the HL-Tracking stage consists of one independent 
EKF for each object. The prediction of each EKF has two stages: (i) early prediction 
(step (1) in pseudo code shown in table1), where the pose of the l*  landmark 
associated with the current observation zk , is predicted using the last executed 
odometry u k−1, and (ii) a standard prediction stage (step (6) in pseudo code), where 

the poses of all landmarks ( {x li ,k }) is predicted using the corrected odometry 

( u k −1 + e k ). The correction stage is standard and considers only the observed 
landmark l*  (step (7) in pseudo code). In the case of mobile objects, the correction 
that the filter takes is standard and very straightforward, since the predicted 
observation may be extracted directly from the state -the observation model Jacobian 
H is equal to the identity or some submatrix-. 

For the system to be able to quickly detect and recover from kidnaps, all tracked 
estimates of objects’ poses in HL-Tracking has a smoothed object coherence indicator 
(see [2] for details). 

3.3   Odometry Error Estimation 

The odometry error estimation (OEE) stage is implemented using a particle filter, as 
in MCL, but in this case each particle represents a hypothesis for the accumulated 
odometric error (instead of the global pose of the robot, as in MCL). Consequently, 
the state of each particle is a pose (x, y, θ) relative to a coordinate system centered in 
an odometry error-free pose. Then, the particles are drawn over the same coordinate 
system shown in figure 2. 

In the sampling stage of the OEE (step (3) in pseudo code), it is considered that the 
expected odometric error is zero, thus, we only add noise covariance to the particles, 
coming from the standard odometry. Given any odometry u k−1, an a priori odometry 
error covariance Qk−1 is used to scatter the particles. The weighting stage consists in  
the calculation of weights for each particle (step (4) in pseudo code). A particle will 
have a higher weight when it better explains the difference between the observed and 
estimated poses of the observed objects. Finally, in the Resampling Stage (step (2) in  
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Fig. 2. Tracked objects and their state in the HL-Tracking stage. Static objects are represented 
by their relative pose, which includes a position and may include a relative orientation (blue 
goal). For mobile objects, a relative velocity is also added (orange ball). 

pseudo code), particles are resampled according to their weights. A particle is copied a 
number of times that has an expected value proportional to its weight. As Resampling is 
the first stage in our implementation, it considers the weights calculated in the previous 
iteration of the system. 

Every time an observation arrives, the system executes these three steps, and finally 
the estimated odometric error ( ek ) and its covariance ( Q e ,k ) are statistically calculated 
over the particles (step (5) in pseudo code), and used as additional predictive inputs for 
the HL-Tracking and Localization stages. Finally, the odometric error estimate is 
subtracted from each particle, to set the new odometry error estimate to zero. 

3.4   Localization 

We have implementations of standard robot’s localization modules based on EKF, 
MCL, and mixtures of them [1]. However, for the proposed approach, we have 
implemented the robot’s localization using a standard EKF filter (see pseudo code in 
table 2). The main new features are: (i) the corrected odometry ( u k −1 + e k ) is used for 
predicting the new robot’s pose (step (8) in the pseudo code), and (ii) the filtered 
relative poses of all landmarks, fixed and mobile, are employed as the filter’s 
observations in the correction stage (step (9) and (10) in pseudo code). 

4   Discussion 

4.1   Is It Good for a Robot to Be Egocentric? 

A clear difference between the proposed approach and most of the existent approaches 
for localization is that, in this one, all the analysis is made in reference to the robot  
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Table 1. HL-Tracking and OEE pseudo code and equations. See definitions in table 3. 

(1) High-Level Tracking Early Prediction Stage // Early prediction using odometry 
x l* ,k

− − = f l (x l* ,k −1 , u k −1 , 0 )  // l*  the landmark associated with the current observation zk , 

and u k−1 the last executed odometry 
(2) Odometry Error Resampling Stage 

Resample ′ x p j ,k{ } according to x p j ,k−1,ω p j ,k−1{ }, j = 1,...,T //T: total number of particles 

(3) Odometry Error Sampling Stage 
Qk−1 = Q u k−1( ) // a priori odometry error covariance 
For each particle p j , j = 1,...,T  do: 

u p j ,k ~ N 0,Q k −1( )  //Normal distribution with zero mean and Q k −1  covariance 

x p j ,k = f p ( ′ x p j ,k , u p j ,k , 0 )  

(4) Odometry Error Weighting Stage 
For each particle p j , j = 1,...,T  do: 

v p j ,k = zk − h l*
( f l (x l* ,k

−− ,u(x p j ,k ),0),0) // zk  the current observation, and l*  the 

corresponding landmark  

˜ ω p j ,k = e
−

v p j ,k
T R l j ,k

−1 v p j ,k

2   

ω p j ,k =
˜ ω p j ,k

˜ ω p n ,k

n

∑
 // weights normalization 

(5) Odometry Error Statistics Calculation 

ek = ω p j ,kx p j ,k

j

∑  // estimated odometry error 

∑=
j

T
kpkpkpk jjj ,,,, xxQ e ω  // estimated odometry error covariance 

For each particle p j , j = 1,...,T  do: 
x p j ,k = x p j ,k − e k  

(6) High-Level Tracking Odometry Prediction Stage  
For each landmark li ,i = 1,...,L  do: // The new poses of all landmarks are predicted 

x l i ,k
− = f l (x l i ,k −1 , (u k −1 + e k ), 0 ) // Prediction using the corrected odometry  

Pli ,k
− = A l,kPli ,k−1A l,k

T + Wli ,kQe,kWli ,k   

(7) High-Level Tracking Correction Stage // Only the observed-landmark’s pose is corrected 
v v ,k = z k − h l*

( x l* ,k
− , 0 )  // zk  the current observation, and l*  the corresponding landmark 

Ml*,k = Hl* ,kPl* ,k
− Hl* ,k

T + Vl*,kR l* ,kVl* ,k
T  

K l*,k = Pl* ,k
− Hl*,k

T Ml* ,k
−1  

x l*,k = x l* ,k
− +K l* ,kv v,k  

Pl*,k = (I−K l* ,kHl* ,k )Pl* ,k
−  
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Table 2. EKF Localization pseudo code and equations. See definition in table 3. 

(8) Localization Prediction Stage // Robot pose prediction using the corrected odometry  
x R ,k

− = f R (x R ,k −1 , (u k −1 + e k ), 0 )   

PR,k
− = AR,kPR,k−1A R,k

T + WR,kQe,kWR,k
T  

(9) Localization Data Association Stage  
v l,k = ∅  
For each landmark li ,i = 1,...,L  do: //Landmarks are filtered out using an innovation 

threshold g 
v l i ,k = x l i ,k − h R , l i

(x R
− , 0 )  

MR,li ,k = HR,li ,kPR
−HR,li ,k

T + VR,li ,kPli ,kVR,li ,k
T  

if (v li ,kMR,li ,kv li ,k
T ≤ g2 )  then  v l,k = v l,k ∪v li ,k  

(10) Localization Correction Stage // Robot pose correction 
KR,k = PR,k

− HR,k
T MR,k

−1  

x R,k = x R ,k
− +K R,kv l,k  

PR,k = (I−KR,kHR,k )PR,k
−  

 

Table 3. Variables, matrices and functions definitions 

Variable/Matrix Definition 

x li ,k , Pli ,k  Landmark li  state vector and covariance matrix. 

xR,k , PR,k  Robot state vector and covariance matrix. 

Qk  A priori odometry error covariance 

f l , fR  Landmarks and robot process models. 

u k−1 Robot odometry. 

ek  and Q e ,k  Estimated odometric error and its covariance. 

x p j ,k  and ω p j ,k  Position and weigh of particle p j  (odometry error estimation) 

f p  Cinematic model of the particles (odometry error estimation) 

AR,k /WR,k  The Jacobian matrix of the partial derivatives of fR  with respect to the 
state vector and process noise, respectively. 

Al,k /Wl,k  The Jacobian matrix of the partial derivatives of f l  with respect to the state 
vector and process noise, respectively. 

H R,k /VR,k  The Jacobian matrix of the partial derivatives of hR  with respect to the 
state vector and observational noise, respectively. 

HR,li ,k /VR,li ,k  The Jacobian submatrix, corresponding to the landmark li , of the partial 

derivatives of hR  with respect to the state vector and observational noise, 
respectively. 

H li ,k /Vli ,k  The Jacobian matrix of the partial derivatives of hli
 with respect to the 

state vector and observational noise, respectively. 
R li ,k  Landmarks observational noise covariance. 
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instead of making it from a global point of view. One could argue that all the previous 
formulation could be transported to a global approach by representing all the local 
information in a global coordinate system. We believe that being egocentric (taking a 
self-centered coordinate system for most of the calculations) is a good decision because: 
(i) many (may be most) of the tasks a robot must perform can be executed with only 
local information, for example, a robot does not need to know its global pose neither the 
global pose of the ball to approach to it, and (ii) even high level tasks that need global 
information normally result in low-level tasks that can be performed locally. 
 

4.2   Towards Playing Soccer with Much Less Use of Localization 

Human soccer players can effectively perform most of their tasks with a very poor 
estimation of their global pose in the field. They make extensive use of local 
information to: go to the ball, shoot to the goal, pass, keep close to the goal (in the case 
of the goalie), keep the ball inside of the field, mark opponents, etc. Even strategically 
positioning, which could be argued to be a localization-dependent task is performed 
with extensive use of local information; players do not only tend to be close to one static 
part of the field, they also (and may be more important) tend to maintain certain 
positions relative to their teammates, opponents and the ball. We believe our work is a 
step towards that direction, because it allows a robot to correct its odometry, and thus its 
relative estimates of non-seen objects, with local information. 

5   Results 

Preliminary results that illustrate the operation of the system are presented. Figure 3 
shows a sequence of egocentric local maps, relative to the robot (coordinate system 
shown in figure 2), in selected moments of a real movement’s sequence (data are 
collected from the robot and displayed in a visualization software). The sequence 
corresponds to the following situation: the robot walks from the yellow goal area to 
the center of the field, while panning its camera. In colors are shown the blue goal and 
the beacons (with exaggerated radiuses) estimations carried out by HL-Tracking. In 
the center of each map, the OEE particles appear, where lighter ones corresponds to 
those having a higher score. In order to make the functioning of the OEE visible, the 
particles’ positions, relative to the center of the egocentric map, are zoomed ~4x with 
respect to the HL-Tracking estimation. In the tested sequence, the odometry was 
specially poorly calibrated, with a high bias (the accumulated odometry was of 
~600cm, while the actual movement of the robot was of ~240cm). However OEE 
combined with HL-Tracking was able to keep tracking of the observed objects and 
correct the non-seen ones (yellow landmarks after they are left behind). 

We have performed several experiments as the one already illustrated. In these 
experiments we have seen that when the robot perceives the fixed landmarks (the ones 
defining the map) regularly, the accuracy of the proposed robot’s localization 
approach is similar that the one obtained when using a standard EKF, and no OEE or 
HL-Tracking stages (variations are less than 1% in accuracy). However, when the 
robot executes attention demanding tasks as approaching the ball without active 
vision behaviors for looking for the fixed landmarks, or turning with the ball while  
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(a) 
  

(b) 

(c) 

 
(d) 

Fig. 3. Egocentric local maps in selected moments of a movement sequence: the robot walks 
from the yellow goal area to the center of the field, while panning its camera. a) The robot starts 
with a perception of the blue goal, all particles are together, with a high score. b) As odometry 
arrives, the particles start scattering, which allows the odometry correction. c) The robot is 
walking, in an intermediate point, d) The robot arrives to the center of the field. 

preparing a goal-kick, the accuracy of the robot’s odometry estimation is 14% better 
than in the case when the OEE and HL-Tracking stages are not used, while the robot’s 
localization is 6% more accurate. 

6   Conclusions and Future Work 

In this article, an improvement over the classical robot’s localization approach was 
proposed, in which, in addition to the robot’s pose, the robot’s odometric error and the 
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landmarks’ poses are estimated. Based on this new approach, we developed an 
improved self-localization system for AIBO robots playing in a RoboCup soccer 
environment. In this system odometric error estimation is implemented using Particle 
Filters, while robot’s and landmarks’ poses are estimated using Extended Kalman 
Filters. Preliminary results show that, when the robot executes attention-demanding 
tasks, the accuracy of the robot’s odometry estimation is 14% better than in the case 
when the new estimation modules are not used, while the robot’s localization is 6% 
more accurate. 

Currently we are carrying out a better characterization of the proposed system. In 
addition, we are developing an extension to the presented system, which consists in 
using the robot’s odometric error for modeling and correcting the permanent 
odometric error using an on-line trained neural network. 
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Abstract. In this paper, a new approach to automatically generating
game strategies based on the game conditions is presented. A game pol-
icy is defined and applied by a human coach who establishes the attitude
of the team for defending or attacking. A simple neural net model is ap-
plied using current and previous game experience to classify the game’s
parameters so that the new game conditions can be determined so that
a robotic team can modify its strategy on the fly. Results of the imple-
mented model for a robotic soccer team are discussed.

Keywords: Robotics Game Strategies, Team Formation, Multi-Agent
Systems.

1 Introduction

A team’s playing strategy is a human football team’s main asset. For human
players, the strategy is fixed by a coach who defines the players’ positions and
roles on the football field based on his/her perception on the game conditions
and the players’ abilities. Accordingly, providing an adaptive playing strategy
should involve defining and obtaining the game’s current conditions. In order to
decide which actions and formation must be taken (and therefore, which low-level
behaviors must be accomplished) a team must gather information to determine
whether this is doing well or not.

For human football teams, it is relatively easy to determine the game condi-
tions. Several criteria are taken into account including the chances to score, the
position on the field, the number of catchings, the score, etc. However, process-
ing this perception information on autonomous robots is not that easy as there
are diverse constraints such as processing capabilities, available time, errors with
sensors and those of Multi-Agent Systems (MAS) running on a dynamic envi-
ronment [1].

From a MAS perspective, the playing strategy for the 4-legged robotic compe-
tition becomes a significant component due to recent advances on robust vision
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and localization techniques which currently provide a more accurate and pre-
cise perception from the environment. Because of the dynamic and underlying
uncertain nature of the league (i.e., there is distributed autonomous intelligence
rather than centralized control), new methods are required to generate effective
playing strategies which should not be resource-demanding. To this end, a new
adaptive approach to team formation using simple and efficient connectionist
techniques is proposed to enable a robotic team to effectively adapt its strategy
and positions as the game goes on, depending on diverse parameters obtained
from the environment’s sensorial information.

This paper is organized as follows: in section 2, related robotics and simulation
approaches to team formation are discussed, section 3 proposes a new neural net
model for team formation and role assignment based on the conditions of the
game, in section 4 the main experiments using our model and different role selec-
tion strategies are discussed. Finally, section 5 highlights the main conclusions,
drawbacks and issues of this research.

2 Related Work

Designing perception systems for autonomous robots participating in robotic
soccer competitions is one of the most important challenges. Recent advances on
hardware and software for these robotic applications such as perception and lo-
comotion have been promising in terms of providing powerful and robust robotic
control systems.

Nevertheless, no significant progress has been reported in team adaptation and
cooperation (4-legged) for behavior-based systems. Most of the research on MAS
for the 4-legged robotic competition focuses on solving individual problems for
each agent (i.e., decision making, navigation, etc). Hence the domain knowledge
is indirectly being considered in a nearly reactive way, that is, decisions are
purely made based on explicit triggering rules specified by the programmers into
the agents’ code.

Since that there is no deep analysis of the game conditions, current playing
strategies are only based on the ball’s current position, and no cumulated ex-
perience or human feedback is considered to improve the agents’ performance.
Furthermore, most of the state-of-the-art research on four-legged robotic teams
use machine learning approaches so as to provide agents with some individual
basic skills (i.e., reactive tasks) or cooperative capabilities but no efforts are put
into getting information regarding the conditions of the game.

A novel approach to decision making based on roles assignment from auc-
tions is proposed by [2]. Agents bid for their roles on the field, and a captain
agent (the bidder) determines which agent offers the most for some role. Each
bid includes the agent’s position and the distance to the ball. Offers are then
optimized by using Genetic Algorithms which allow the agents to bid for the
best possible offer as the system evolves. However, the agents’ actions are not
taken into consideration and no estimates regarding the conditions of the game
are provided.
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A slightly different role assignment strategy is proposed by [8] in which de-
cisions are distributedly made, this is, no coordinator or captain is designed.
For this, each agent reacts to the team mates’ positions and the ball’s position
by minimizing a distance function so that the closest agent will be given the
attacker role whereas the others take defense and support roles. The distributed
nature of the model provides a fair approximation of the overall view of the
world among agents which allows them to determine the ball’s position more
precisely.

In order to deal with some of these issues, [9] developed a simulated train-
ing agent capable of classifying the opponent’s model using a Bayesian method
which is previously trained with manually defined rules. Based on the real-time
opponent’s model and the environment’s status, the training agent creates cen-
tralized plans using adaptive Simple Temporal Networks to be distributedly ex-
ecuted by the players in which best plans are selected by using a hill-climbing
search strategy. Overall, the approach does not provide a clear notion of the
conditions of the game hence a team can not determine how good/bad the ex-
ecuted actions are. This problem is partially overcome by using a multi-agent
system in which agents cooperate to generate different models of the world: a
local model and a shared model. However, the approach focuses on error reduc-
tion of self-localization rather than cooperation to determine the conditions of
the game.

In the context of the RoboCupSoccer Simulation league, some approaches de-
termine the strategy of the opponent so to dynamically adapt to the environ-
ment. Game conditions are so computed from statistical parameters such as the
ball’s average position, number of corners, number of goals, etc., which are diffi-
cult to obtain accurately. Other approaches explore the generation of agent-agent
advises. Here, a training agent is an adviser for the other players and produces
a set of Markov rules obtained from a set of abstract states contained in the
previous games’ logs (environment’s status, agents’ actions, etc). One of the
drawbacks is that obtaining these logs involves a global view of the environment
which may not be easily available for the four-legged league [5].

Role and task assignment problems have also been formally studied by [3] in
the context of MRTA (Multi-Robot Task Allocation). One of the drawbacks of this
analysis is that the dependence between tasks/roles assigned to robotic agents
is not considered. Note that this is a key issue as most of the tasks allocated to
one agents has a strong relation with tasks assigned to the other agents of the
robotic team. Although the approach can be applied to roles distribution, this
always gets the same task distribution to a given scenario as Greedy search is
used [6].

3 An Adaptive Model for Computing Game Conditions

One of the most important tasks of a game strategy is to determine whether
the executed actions are correct. We need to compute the environments’ charac-
teristics which establish when the game conditions are favorable or unfavorable.
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There are several approaches to determine the game conditions, however, most
of them focus on simulations.

We propose a new model to automatically generate dynamic formation strate-
gies based on the game conditions. The approach computes parameters that de-
termine a good or bad game with no need to manually define input data such as
difference of score and number of agents. The relation between these data and the
game conditions are automatically obtained by using a learning approach which
takes into account human experience, other agents’ perceptions and tasks, etc.
The agents’ experience (i.e., actions performed in a time period) provides criteria
on the game conditions with no need to deal with complex perception data.

The Game Conditions (GC) of a team establish how favorable/unfavorable
the conditions of the game are. The value of the GC can not be obtained in-
stantaneously so the condition can be seen as a sequence of events occurring in
a period of time. Thus a GC represents a cumulative form of the current game
condition. Unfavorable conditions for the team occur whenever the current game
condition shows better choices of losing the game. On the contrary, when favor-
able conditions occur, the choices of winning the game are better than rather
losing it. Near-zero values indicate that the conditions are either uncertainty or
balanced.

Computing the GC based on the players’ activities provides us with rich
information to make further decisions (i.e., difference of score is not a determining
factor by itself as a goal can happen by a chance). For instance, if a team is doing
very well and even so there is a tie (i.e., there is no useful feedback information
on 0-0 scores), then obtaining favorable GC for the team allows it to put more
effort into offensive tasks so that this can increase the chances of scoring.

In the proposed model, experiences are seen as a set of actions performed by
the agents in a period of time T and include:

– Player: Represents any player but the keeper. The player’s experience is
computed by counting the following actions: Actions (AC) is the total num-
ber of actions the player intents to perform on the ball, Blockades of the ball
(BL), Shots (SH) is the number of attempts to score on the opponent’s
defense zone, Changes of Positions (CP ) is the total number of changes of
positions, Defense to Attacker (DA) is the number of changes of position
from defense to attack, Attacker to Defense (AD) is the number of changes
of position from attack to defense, Total Time (T ) is the elapsed time since
the beginning of the sampling, Defense Time (DT ) is the time spent to per-
form defense tasks on the defense zone, Support Time (ST ) is the time spent
to perform support tasks on the center of the football field, Attacker Time
(AT ) is the time spent to perform attack tasks on the opponent’s defense
zone, and Idle Time (IT ) is the time spent in which no tasks are executed.

– Goal Keeper: The keeper avoids the opponent team to score and owns
an exclusive field’s area. Since the goal keeper does not change its position
nor perform roles exchanging, only the action parameters on the ball are
required. Note that the only enabled actions for the robotic team are catch-
ing the ball and shooting the ball, both of which can be considered a kind
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of “catching”. Hence both actions can be thought as one parameter called
Warning time (WT ) which is the time the goal keeper is in risk.

– Captain: The team’s captain gathers the players’ game data and produces
its own parameters. In addition, this provides us with information required
to calculate the difference of scores (DS) such as the Scored Goals (SG)
and the Received Goals (RG).

Note that we are interested to quantify the intent of acting rather than de-
termining the effect these produce. This outcome will be learned from a Neural
Network by putting all the game’s parameters together.

The parameters required to obtain the players’ experience are sampled every
T seconds. Every time a sampling process gets started, the corresponding expe-
rience values are set to 0 and data are normalized to values between 0 and 1.
Each normalized experience’s parameter can be seen in table 1.

Table 1. Experiences Computed for Each Agent’s Role

Experience Agent Type Meaning

EBL = BL
AC

Player Blockades

ESH = SH
AC

Player Shots

EDA = DA
CP

Player Defense to Attack change

EAD = AD
CP

Player Attack to Defense change

EDT = DT
T

Player Defense Time

EST = ST
T

Player Support Time

EAT = AT
T

Player Attacker Time

EIT = IT
T

Player Idle Time

EDS = 1
1+eSG−RG Captain Difference of Score

EWT = WT
T

Goal Keeper Risk Time

The difference of score (SG(t) − RG(t)) is then represented as a sigmoid
function for differences between −10 and +10. Note that the four-legged league
does not allow (absolute) differences higher than 10.

In order to compute the GC, a Neural Network (NN) based model is proposed
to map players’ actions into game conditions. The approach is capable of finding
optimum relationships between the players’ actions so that game conditions can
be computed and then transferred to the team’s strategy.

Training of the NN is carried out by performing nine ten-minute robotic soccer
simulations. This aimed to obtain initial parameters so to investigate the feasi-
bility of the proposed model. Since that the competition has time and resources
constraints, simple NN models have been used. In particular, a Back-Propagation
Neural Net was implemented based on [4]. A usual sigmoid function was used as
an activation function in the hidden and output layers [4] and this provided fair
results on the different configurations. Initially, a full-connected neural network
is fed with random values of weights with learning rate values between 0.2 and
0.3. Experiments suggested that learning rates of η = 0.3 produced the best
results as for convergence rates and error drops.
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Since that every agent can provide its own set of experiences, an individual
vector was generated to combine the whole set of the team’s experiences. To this
end, every agent’s experiences (figure 1) were averaged by computing the values
EDS and EWT so to generate the following input vector to the NN:

Xxp = (
N∑

i=1

Ei
BL

N
,

N∑
i=1

Ei
TI

N
,

N∑
i=1

Ei
DA

N
,

N∑
i=1

Ei
AD

N
,

N∑
i=1

Ei
TD

N
,

N∑
i=1

Ei
TS

N
,

N∑
i=1

Ei
TA

N
,

N∑
i=1

Ei
TO

N
, EDG, ETR) (1)

where i represents the i− th agent, and N is the total number of agent of a team
(no keeper is considered).

Determining the game conditions is performed by getting information from a
human expert. Real data were obtained by simulating a football game. A total
of 9 games of 10-minutes each were performed with no side changes. Every 30
seconds, the game is stopped so to ask the expert to assess the game with a fitness
ranging from 0 to 1 concerning the team’s performance, which is regarded to as
GChum ∈ [0, 1]. The expert must provide a value close to zero whenever he/she
thinks the GC is unfavorable, whereas a value close to 1 is provided whenever
the conditions are seen as favorable. For each time interval, the vector generated
from equation 1 is obtained so that the corresponding input vector (Xxp) and
expected output (GChum) are produced to train the NN.

Using this method, 171 training data were generated from which 40% was
used for training purposes and 60% was used for testing the net. Results of the
training tasks suggest that the model is well correlated with the expert’s score.

Graphics in figure 1 shows the assessment of the trainer GChum versus the
difference of score DS. For GChum values close to zero, a correlation with the
negative difference of score can be observed. In addition, whenever the condi-
tions are favorable, DS gets closer to the maximum (1). However, whenever the
difference is minimum, the trainer provides a broad number of assessments. For
example, for a low difference of score (DS = 0.5), the game conditions have been
assessed from 0.1 to 0.9 by the trainer which is far more significant.

A metric for assessing the team’s attitude was designed. This represents the
attacking and defending efforts of a team for each of the two kinds of games (de-
fense and attack). Attitude provides us with information regarding the defensive
or attacking attitude of a team depending on which tasks the team is willing to
perform most.

Accordingly, the attitude indicates the proportion of resources the team is
willing to spend for defending and attacking during attack/defense games. Thus,
the lower the value of attitude, the better the willingness to defend is. Attitude
values close to 0 indicate that the team is willing to defend. On the contrary, if
the value is close to 1, the team is more willing to perform attacking tasks.

Furthermore, a policy is defined as a team’s most preferred attitude based
on the GC. A human trainer is responsible to define and set the policy before
the game gets started. Thus, a policy is a function on the game conditions and
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Fig. 1. (a) Difference of Score (DS) versus Game Conditions according to the human
expert (GChum)
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Fig. 2. Proposed Functions for policy. a) Defense Policy b) Offensive Policy.

provides an attitude to be adopted by the team, this is: attitude = policy(GC) ∈
[0, 1]. Graphics in figure 2 show the different policies a team may adopt. For ex-
ample, figure 2(a) represents a policy generating a defensive attitude providing
that GC are unfavorable for the team. A policy that produces an offensive at-
titude, assuming unfavorable conditions, can be seen at figure 2(b). Here, the
human coach aims to set the game policy for the team, so the policy function
which fits the expectation is provided to the model.

To select the most suitable team formation according to its policy, a selection
strategy based on the Roulette Wheel, commonly used for some implementation
of Genetic Algorithms, was applied [7].

Team formation involves assigning a defined area for the agents when they
are not acting on the ball. This of area assignment (aka. home) is a specific
position in axis X of the field divided into three areas: defense, central and
offense. From here, the selection algorithm will pick a home distribution for each
agent based on the team’s attitude and current formation, keeping in mind that
sudden changes on the team formation are not desirable as the agents would
need to move a lot in order to reach the home position. Accordingly, a team
formation is defined as:

F = (Fx, Fy, Fz) with Fx + Fy + Fz = N
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where Fx, Fy, Fz represent the number of players having a defense home, a
central home and a attack home, respectively, and N is the number of agents
in the formation. The fitness of a formation F can be computed based on the
team’s attitude and the closeness to the previous formation:

fitnessatt(F) = 1 − |att − (Fx ∗ (
0
N

) + Fy ∗ (
0.5
N

) + Fz(
1
N

))| (2)

where att is the attitude value obtained from the game conditions and the pol-
icy. Next, the closeness-based fitness is determined by calculating the similarity
between the current (F′) and the new formation (F). This is computed from the
Euclidean distance between both formations and normalized to the maximum
distance (i.e., the distance between formations (3, 0, 0), (0, 0, 3) and (0, 3, 0), that
is,

√
18):

fitnesssim(F,F′) =

√
(F − F′)2√

18
(3)

Both fitness functions are weighted according to an expert’s defined parameter
α ∈ [0, 1]. Thus, the fitness of a formation is evaluated from the current formation
and current attitude as follows:

fitness(F,F′) = αfitnesssim(F,F′) + (1 − α)fitnessatt(F) (4)

Our selection algorithm computes the fitness for all the possible formations
Fi with i ∈ [1, 10]. An elitist criterion is used to pick the M formations having
the highest fitness. Next, the fitness proportional to fitnesspi is calculated for
each selected formation as: fitnesspi = fitnessi∑ 10

i=1 fitnessi

Obtained fitnesses (fitnesspi) are then sorted and a random number β with
uniform distribution is chosen. The algorithm cumulates the fitnesspi in de-
scending order until the value is greater or equal to β. Afterwards, the best
formation having the last fitness Fi is selected. The outcome of the algorithm is
the new formation Fnew which represents the best fitness based on the team’s
attitude and the expert’s criteria.

4 Evaluation and Results

The benefits of using the model for determining the game conditions on the fly
were investigated by carrying out a series of experiments. This aimed to assess
the robustness of the approach in terms of different time intervals, bandwidth ef-
ficiency, and the improvement of the team’s performance compared to a different
team in which no cooperation strategy is provided.

The model is capable of operating on different time intervals with no depen-
dency on the sampling period T used for the training phase. The tolerance of
the neural net model to different run-time intervals was assessed by performing
a series of games under two approaches. The first approach considers sampling
with continuous cumulation of experience, and the second one involves sampling
with cumulation at independent intervals of experience. For these, nine games
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Fig. 3. (a) GC for continuous cumulated experience. (b) GC for independent-interval
cumulated experiences.

were performed for training purposes. Changes to the conditions during these
games having the worst performance can be seen at figure 3. The games do not
use the dynamic formation strategy and so a fixed formation involving two de-
fenders and one attacker is provided only. Runs in figure 3(a) show that despite
having different sampling time intervals, the model is still capable of computing
a correct value for GC, meaning that for the same game, the sampling time is
not significant whenever the approach no.1 is applied.

The effects of the net having experience removed between samplings can be
seen in figure 3(b). Based on the approach no. 2, results suggest that agents
represent only game conditions from time t − T to t, and accordingly GC is
perceived as an evaluation of the last sampled time interval.

The efficiency of the model for dynamic team formation was assessed by per-
forming 24 testing games in which 4 unseen opponent agents teams were used.
These games used different approaches for cumulating experience, each of which
was tested using three time intervals (10, 25, 60). The opponent teams were
Team 1 (potential fields based navigation), Team 2 (dynamic role assignment
with agent always gets the ball), Team 3 (fixed formation involving two defend-
ers and one central), Team 4 (stands in the way of the opponent agents).
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Table 2. Results of the Testing Games for the Model Team

Team + Score - Score Difference Total Score

Baseline 34 36 -2 18

Model 54 38 16 37

(a)

0 5 10 15 20 25
0

1

2

3

Time t (seconds * 25)

G
C

 b
as

ed
 F

or
m

at
io

n

 

 

No.  of Defenders (Fx)
No. of Midfielders (Fy)
No. of Attackers (Fz)

(b)

1 2 3 4 5 6 7 8 9
0

1

2

3

Time  t (seconds * 60)

G
C

 b
as

ed
 F

or
m

at
io

n

 

 

No. of Defenders (Fx)
No. of Midfielders (Fy)
No. of Attackers (Fz)

Fig. 4. Two Experimental Formations: (a) Formation with T=25. (b) Formation with
T=60.

The model was implemented and based on the simple individual skills of team
no. 3 which allowed us to assess the dynamic formation strategy. This team is
referred to as the Model Team or mTeam whose testing parameters were as
follows: defensive policy with a stepness of s = 0.2, sampling time every T
seconds with T ∈ {10, 25, 60}, 4 agents. The same 24 games were performed
by using the team no. 3 as baseline and having a fixed formation (a central, a
defender, an attacker). This team does not use any adaptive formation strategy
and is referred to as the Base Team or bTeam.

Performance was then assessed by assigning scores to the bTeam and mTeam.
The obtained score for each team is counted as for human football: the winner
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team gets 3 points and the loser gets 0 points. If there is a tie, each team gets 1
point. Some key observation can be made from results in table 2.

Changes on the game conditions for both teams can be observed from graphics
in figure 1. Dark line represents the game conditions for the mTeam which uses
the dynamic formation strategy whereas the dotted line represents the conditions
for the bTeam. In both scenarios, the teams’ defensive policy allows them to keep
the conditions favorable, which can be seen by looking at the scores, the obtained
differences, and the game conditions (GC).

Graphics in figure 4 show the changes to the formations during the games.
Performance of formations in figure 4(a) suggests that the initial formation is
centralized with most of the players standing at the center of the field. As the
game goes on, the formation becomes more offensive as the game conditions
advice them to do so (GC close to 0.8). The fixed and rigid structure of the
bTeam refrains it from scoring a single point due to the lack of supporters.
Furthermore, the bTeam frequently tended to lose the ball at the middle of the
field.

The performance of the formation of figure 4(b) can be seen in graphics of
figure 1(b), in which the initial formation is uniform (i.e., there is a defender, an
attacker and a supporter).

Our team takes a defensive formation involving two defenders and one central
as the opponent team performs most of the offensive and risky actions. As the
time goes on, game conditions become favorable for the model team as this keeps
the ball most of the time. Overall, the strategy produces a more centralized
formation using two centrals and one defender, and as a consequence favorable
conditions are kept by scoring 3 goals.

5 Conclusions

A new approach to dynamic team formation using a simple Neural Net based
model is described. The model is a mixture of simple neural net approaches,
heuristics-based evaluation, multi-agent systems techniques and the human ex-
pert’s experience so as to provide a robust method to compute game conditions
which in turn allows the team to dynamically modify its positions and roles on
the fly.

The experiments and real testing show that the neural net’s prediction level as
being trained by a human expert is well correlated with the automatically trained
model. This suggests that the function applied to automatically generate samples
is both robust and resource-efficient. The final design and implementation for
our team also provides some interesting insights. Neural nets being trained at
periods of time in which previous experience was removed before starting a new
period of sampling proved to be useful to measure the change of conditions in a
specific period of time. Hence this model may be applied to check whether some
decision on a performed strategy had an instant effect on the game or not.
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Abstract. Reinforcement learning is a paradigm under which an agent
seeks to improve its policy by making learning updates based on the ex-
periences it gathers through interaction with the environment. Model-free
algorithms perform updates solely bas ed on observed experiences. By
contrast, model-based algorithms learn a model of the environment that
effectively simulates its dynamics. The model may be used to simulate
experiences or to plan into the future, potentially expediting the learn-
ing process. This paper presents a model-based reinforcement learning
approach for Keepaway, a complex, continuous, stochastic, multiagent
subtask of RoboCup simulated soccer. First, we propose the design of
an environmental model that is partly learned based on the agent’s ex-
periences. This model is then coupled with the reinforcement learning
algorithm to learn an action selection policy. We evaluate our method
through empirical comparisons with model-free approaches that have
been previously applied successfully to this task. Results demonstrate
significant gains in the learning speed and asymptotic performance of
our method. We also show that the learned model can be used effec-
tively as part of a planning-based approach with a hand-coded policy.

1 Introduction

The reinforcement learning (RL) [12] problem is usually modeled as a Markov
Decision Process (MDP) [10], which is of the form (S, A, R, T, γ). S is the set of
states in the environment, and A the set of actions available to the agent. R :
S×A → R is the reward function for the task: it returns the real number reward
provided to the agent for taking an action from a given state. The dynamics of
the environment are encapsulated in the transition function T : S×A×S → [0, 1];
given a state and action, T returns a probability distribution over next states
to which the agent may be transported. A (deterministic) policy π : S → A
specifies the action to be taken by the agent from any given state. Every policy
π can be associated with an action value function Q : S×A → R that computes
the expected long-term discounted reward the agent will accrue by following π
after taking some action a from some state S. γ ∈ [0, 1] is a discount factor in

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 171–183, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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the expected long-term reward. The problem is to solve for an optimal policy π,
i.e., one that maximizes maxa Qπ(s, a) for every state s, defined by:

Qπ(s, a) = R(s, a) + γ
∑
s′εS

T (s, a, s′)Qπ(s′, π(s′)). (1)

In most practical settings, the agent must act in the environment to gather
experiences, using which it can improve its policy. An experience (or transition)
is of the form (s, a, r, s′), where s is the agent’s state, a an action taken from s,
r the reward received, and s′ the state to which the agent moves. Theoretical
guarantees establish that under some conditions, the optimal policy can indeed
be learned by making temporal difference updates based on the observed ex-
periences, for instance, through methods like Q-learning [16]. Nonetheless, it is
seldom possible in real world tasks to meet the conditions necessary for con-
vergence. Solutions to complex tasks invariably have to adopt an engineering
approach and exploit their underlying structure to the extent possible.

In this paper, we explore the potential of model-based methods in scaling
RL to complex tasks. Whereas model-free methods like Q-learning interpret the
policy directly through the action value function Q, model-based methods seek
to decouple Q into its “components” T and R, termed the transition and reward
models of the task respectively. By doing so, it becomes possible to use the model
(T and R together) to simulate experiences that can be used to update Q, instead
of solely relying on ones gathered from the environment. More specifically, the
model can be used to explore parts of the state space that are possibly under-
represented in the observed experiences. Hence, simulating experiences using
the model can potentially improve the quality of the solution, while achieving
economy in sample complexity. A further benefit gained from learning T and
R individually is the advantage of separating the dynamics of the environment
from the objective of the task at hand, offering the flexibility to share parts of
the solution with different tasks in similar environments.

Model-based methods have been applied successfully in the past to several
challenging problems. In domains such as game-playing, a partial or complete
model of the environment is sometimes available, but determining the action
selection policy can still be challenging owing to factors like the intractability of
searching through the state space [14,15]. On the other hand, for many real-world
domains, learning the environmental model is itself a substantial undertaking.
In past efforts involving learning the model [2,9], the environment is typically a
physical system that is sampled at some regular frequency, and the actions are
control signals perturbing the state of the system. By contrast, in Keepaway,
the domain we consider for our experiments, the actions are abstract, high-
level skills, which last for extended, variable durations of time. Keepaway is a
large-scale, complex, multiagent task involving both teammates and adversaries,
which are part of the environment being modeled. The approach we follow is
to partially learn the model for this task, and partially describe it using simple
rules. This necessarily approximate model is then used in our Model-based Policy
Improvement (MBPI) algorithm to examine if it can still help expedite learning.
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The remainder of the paper is organized as follows. Section 2 describes the
Keepaway task, and Section 3 presents our design of a model for this task.
Section 4 provides details of the model-based RL algorithm. In Section 5 we
present experimental results evaluating our method, providing comparisons with
other algorithms that have been applied to Keepaway. Section 6 discusses related
work, and Section 7 concludes.

2 Keepaway Task Description

Keepaway [11] is a subtask of simulated RoboCup soccer [8] played between
a team of m keepers and a team of n takers inside a rectangular region. The
objective of the keepers is to maintain possession of the ball (have it close enough
to be kicked), while the takers try to steal it. The task is episodic – each episode
starts with the ball in possession of one of the keepers, and ends when some
taker gets the ball or it goes outside the region of play. The version of Keepaway
we consider for our experiments involves 3 keepers and 2 takers (3v2) inside a
20m×20m region, as depicted in Figure 1. We proceed to describe how Keepaway
is framed as a reinforcement learning problem, outlining the challenges it poses.

A complete state description in Keepaway would include the positions and
velocities of the players and the ball, the players’ body and neck angles, their
stamina levels, and so on. However, we find that their positions alone convey
most of the information required for the purpose of learning. Since the players
and ball may occupy any position inside the region of play, the state space is
continuous. Furthermore, the players are provided noisy sensations of state.
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K1

K3

Ball

T2

T1 K2

Center

Fig. 1. 3v2 Keepaway. K1,
K2, and K3 are keepers. T1

and T2 are takers.

The keepers are the learning agents: the task each
keeper has to learn is which action to take when it
gets possession of the ball. This being the case, it be-
comes necessary to define the concept of a state only
when some keeper has possession. In each state, the
keeper closest to the ball is denoted K1; the other
keepers are denoted Ki, i = 2, 3, 4, . . . , m, Ki being
the i-th closest keeper to K1. Similarly, the takers are
denoted Ti, i = 1, 2, 3, . . . , n, Ti being the i-th closest
taker to K1. K1 is the keeper that must choose an ac-
tion to execute. The behaviors of the takers and keep-
ers who are without possession are fixed: the takers
try to intercept the ball, while K2, . . . , Km attempt

to move to positions to which a pass from K1 is likely to succeed.
Figure 1 illustrates the indexing of keepers and takers, also marking out dis-

tances and angles among the players and the center of the field. These serve as
abstract features derived from the players’ positions, which are used as inputs to
the function approximator representing the action value function. We refer the
reader to Stone, Sutton and Kuhlmann [11] for a detailed description of these
abstract state features. Notice that there are 13 for 3v2 Keepaway.
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The actions that are available to K1, when it has possession of the ball,
are HoldBall, by which it keeps the ball with itself, and PassBall(i), i =
2, 3, 4, . . . , m, which is a direct pass to the Ki. While it is convenient to treat
HoldBall and PassBall(i) as actions, they are really high-level skills or op-
tions [13] implemented through a series of low-level actions like Turn and Kick.
Passes can last a variable number of simulator cycles; so the task is effectively
a Semi-Markov Decision Process [4]. The transition dynamics of the extended
high-level actions, which are necessarily stochastic because of the keepers’ noisy
actuators, thus become susceptible to even greater irregularity. Also, the dynam-
ics are not smooth, as some actions can lead to terminal states.

The reward provided for taking an action from a state is simply the number
of cycles elapsed until the next state is reached. Since the task is episodic, no
discounting is required. Maximizing expected long-term reward corresponds to
maximizing the expected overall duration of the episode, also called the hold
time. HoldBall() typically lasts 1-2 cycles; PassBall(i) can last between 4 and
12 cycles, depending on the distance the pass has to travel. A cycle of simula-
tion lasts 100 milliseconds in real time. In 3v2 Keepaway, a random policy that
chooses uniformly among the actions (HoldBall, PassBall(2), PassBall(3))
registers a hold time of about 4.7 seconds.

In our experiments, we use the same version of 3v2 Keepaway as used by
Kalyanakrishnan and Stone [6], but with one minor change. In their version, K1

executes HoldBall through a series of kicks close to its body that take it away
from the direction of the takers. In our implementation, K1 simply stops the ball
once it is kick-able, and subsequently leaves it untouched. We find that this helps
our model-based approach by simplifying the transition dynamics. Interestingly,
informal testing reveals that it also leads to better performance with the model-
free methods successfully applied earlier [6,11]. We compare all these algorithms
using our version of HoldBall.

3 Learning the Model

In this section, we describe our design of a model for Keepaway. The precise
requirements of the model are that given state s and action a, it predict a
distribution over next states s′, as well as the reward r for the transition. Since
the actions are disparate, high-level skills, we maintain separate models for each
action. Figure 2 lays out the schematic design. Though Keepaway is indeed a
stochastic domain, we adopt the simple approach of approximating its dynamics
using a deterministic model, i.e., the model returns a unique next state s′ instead
of a distribution over next states. Since some transitions can lead to terminal
states, we employ a separate predictor to compute t, a boolean value indicating
whether a given transition is terminal. Likewise, a separate predictor computes
the real-valued transition reward r.

Our main objective is not building an accurate model in itself, but rather
to evaluate the advantages of using a model in conjunction with the RL algo-
rithm. We find it sufficient for this purpose to specify parts of the model using
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intuitive, hand-coded rules, but nonetheless, necessary to derive other parts of
it by applying machine learning. As shown in Figure 2, the next state s′ is
computed by applying a simple rule to the current state s. The rule simply as-
sumes the players do not change their positions between s and s′. In case of the
HoldBall action, the ball’s position in s′ is predicted to be the same as K1’s,
and if the action is PassBall(i), the ball is predicted to occupy the same posi-
tion as Ki. Figure 3 illustrates through an example from 3v2 Keepaway how the
next state prediction is made for a given state and action.

Rule

Classifier

State Predictor

Termination Predictor

a
(Hand−coded)

Player
and Ball

Coordinates

Abstract
Keepaway
Variables

Player
and Ball

Coordinates

(Learned)

(Learned)

a

aRegressor
Reward Predictor

t

r

aModel

s
in s

in s’

s’

Fig. 2. Schematic Diagram
of Keepaway Model

In our model, the termination and reward predic-
tors are trained through supervised learning using
the observed experiences. The reward predictor for
each action is a single-layer neural net with 10 hid-
den nodes. Its inputs are the abstract state features
derived from the Keepaway state (see Section 2),
over which effective generalization is possible. The
output is a real-valued prediction of the reward.
The termination predictor is a single-layer neural
net with 5 hidden nodes. It takes the same inputs as
the reward predictor, but computes a boolean-valued
output instead. In 3v2 Keepaway, only roughly
10% of all transitions are terminal; nonetheless, we
increase the weight of terminal transitions in the

training distribution to present each termination predictor an equal number of
terminal and non-terminal transitions.
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K3

K1
Ball K2

T1

Fig. 3. At left is a start state. The subsequent figures show
true (shaded) and predicted (outlined) next states reached
after each action is taken from the start state.

The operation of
the model is sum-
marized as follows.
Given a set of train-
ing experiences D =
{(s, a, r, s′)}, we fit
a model as M =
learnModel(D), the
learning restricted to
the termination and
reward predictors for

each of the actions. Subsequently, M can be used to make predictions; given state
s and action a, the predictions are of the form s′ = M.predictNextState(s, a),
t = M.predictT ermination(s, a), and r = M.predictReward(s, a). In Section 4,
we explain how the model is employed under the Model-based Policy Iteration
(MBPI) algorithm.

Table 1 lists the prediction errors of the models for the three actions in 3v2
Keepaway. The entries are averages from 5 independent runs – in each run a
model is learned based on transitions from 50 episodes (an episode typically
comprises 10-20 transitions) during which the keepers follow a random policy.
This model is then tested for 1000 episodes, again following random action
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selection. For the purpose of computing prediction errors in the positions of
players, we use the same ordering (K1, K2, K3, T1, T2) in s′ as seen in s. Thus, if
keeper KA is K1 in s, and has passed the ball to KB, KA is still considered K1

in s′ while computing the error. Of course, the real ordering of s′ is used while
computing abstract features for s′.

We carried out 3v2 Keepaway inside a 20m × 20m region; distances among
players are typically 5-15m. Notice that for the HoldBall action, the prediction
errors for all the players’ positions are less than 1.0m; this is because the ac-
tion itself typically lasts only 1-2 cycles, during which the players do not move
very far. The errors are much higher for the pass actions, and indeed higher for
PassBall(3) than PassBall(2) because of the longer distance the pass has to
travel. The reward predictions errors are quite small for HoldBall, and within
about 2 cycles for the pass actions. For the PassBall(i) actions, the misclassi-
fication probabilities of terminal and non-terminal transitions are comparable.
The high error in classifying terminal Hold actions arises because of insuffi-
cient training data: only a very small fraction of HoldBall actions terminate
while following a random policy. We recognize that there is scope to improve
the accuracy of the model; in particular, the accuracy of the state predictor (see
Section 5). Nonetheless, the measure we seek to evaluate in this paper is not the
accuracy of the model itself, but the performance achieved by the RL algorithm
employing the model. The algorithm is described in the next section.

Table 1. Errors in the positions are root mean squared values of the distance (in
meters) between true and predicted positions. Terminal and Non-terminal errors are
the fractions of terminal and non-terminal actions misclassified. Reward errors are root
mean squared values of the difference (number of cycles) between true and predicted
values.

Action Position Terminal Non-terminal Reward
K1 K2 K3 T1 T2 Ball

HoldBall 0.63 0.89 0.91 0.81 0.96 0.64 0.93 0.004 0.33

PassBall(2) 3.62 3.88 4.03 2.85 2.89 3.74 0.16 0.13 2.07

PassBall(3) 4.03 3.78 4.78 2.85 2.92 4.98 0.17 0.12 1.96

4 Using the Model

The central idea underlying our Model-based Policy Improvement (MBPI) algo-
rithm is to use the gathered experiences to learn a model of the environment,
and then use this model extensively to simulate transitions based on which the
action value function is updated. The model and the learned policy are improved
iteratively, as we describe in Algorithm 1.

We begin with some initial Q function (line 1). A policy is interpreted from Q
through the selectAction() function (line 9), which can implement, for instance,
ε-greedy action selection. A batch of experiences D is collected by following this
policy for some fixed number e of episodes (lines 6-14). Once the experiences are
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Algorithm 1. Model-based Policy Improvement
1: Q ← Q0. //Initialize action value function.
2: D ← ∅. //Initialize memory of experiences.

3: //Improve Q iteratively.
4: repeat

5: // Experience Generation
6: for e episodes do
7: s ← startStateFromEnvironment().
8: repeat
9: a ← selectAction(Q).

10: r ← rewardFromEnvironment().
11: s′ ← nextStateFromEnvironment().
12: D ← D ∪ (s, a, r, s′).
13: until s′ is terminal.
14: end for

15: // Model Learning
16: M ← learnModel(D).

17: // Policy Improvement
18: for n iterations do
19: s ← randomStartStateFromSimulator().
20: d ← 0.
21: //Simulate trajectories of depth depth.
22: repeat
23: a ← selectActionSimulate(Q, s).
24: r ← M.predictReward(s, a).
25: t ← M.predictTermination(s, a).
26: // Update Q based on simulated transitions.
27: if t then
28: Q(s, a) ← Q(s, a) + α(r − Q(s, a)).
29: else
30: s′ ← M.predictNextState(s, a).
31: Q(s, a) ← Q(s, a) + α(r + γ maxa′ Q(s′, a′) − Q(s, a)).
32: s ← s′.
33: end if
34: d ← d + 1.
35: until t = true or d = depth.
36: end for

37: until Q has converged.

collected, they are used to learn a model M of the environment (line 16). Q is
now updated using transitions that are simulated using M (lines 18-36). This
is accomplished by generating trajectories of depth depth using M , beginning
with some random start state (line 19) and following an action selection policy
specified by the function selectActionSimulate() (line 23). Once Q is updated,
it is used to generate the next batch of experiences; a new model is learned and
the process continues until Q converges. MBPI is similar to Lin’s experience
replay algorithm [7], applied to Keepaway by Kalyanakrishnan and Stone [6],
which differs from it in the following manner: in experience replay, no explicit
model is learned, and the policy improvement occurs through (depth 1) updates
solely involving the experiences stored in D.

In all our experiments, we have fixed the values of parameters and choices
for subroutines through informal experimentation. The function approximation
scheme we use for representing Q is the same used by Stone et al. [11] and
Kalyanakrishnan and Stone [6] – a separate CMAC [1] for each action, taking
as input the 13 abstract state features computed from the state. Each CMAC
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employs 32 one-dimensional tilings along each feature, the tile widths being
3.0m for features corresponding to distances, and 10◦ for those corresponding to
angles. The selectAction() function implements ε-greedy action selection, with
ε = 0.01. We fix the number of experiences in each batch, e, to 50. By setting
all CMAC weights to zero in Q0, the initial action value function, the policy
followed for generating the first batch of experiences is random.

The set of experiences D used in every iteration to learn the model comprises
all the past experiences collected thus far; we find that this yields better per-
formance than obtained by only keeping the most recent batch (or some recent
window) of experiences in D. The termination and reward neural networks for
each action are trained using supervised learning. For the termination predictors,
200, 000 backprop updates are made with a learning rate of 0.0001, picking ter-
minal and non-terminal transitions in D with equal likelihood. 20, 000 backprop
updates using randomly chosen experiences from D are made in the case of the
reward predictors, with a learning rate of 0.0005. While making learning updates
to the function approximator representing Q using experiences simulated by the
learned model M , we fix the number of (Q-learning) updates to 30, 000, each
made with a learning rate of 0.025. We find that doing so offers more stability
than fixing the number of iterations n, under which the actual number of updates
would depend on the size of D. The start states of the trajectories are randomly
chosen start states from the transitions in D, and selectActionSimulate() im-
plements random action selection.

5 Experimental Results and Discussion

In this section, we present the results of our experiments on 3v2 Keepaway.
Figure 4(a) shows the performance of our model-based policy iteration algo-
rithm, using depth = 1 while simulating trajectories (MBPI-1). It is compared
with experience replay (ER), which achieves the best asymptotic performance
on 3v2 Keepaway among the batch methods considered by Kalyanakrishnan and
Stone [6], and simple on-line learning (OL) [11], where a single Q-learning up-
date is made after every transition. We find ER to achieve its best performance
by making 30, 000 Q-learning updates during the policy improvement phase,
with learning rate 0.025. Interestingly, the same values were found the best for
MBPI-1. For OL, we used a learning rate of 0.125, the same used by Stone et al.
[11] in their Sarsa-based OL implementation. Figure 4(a) shows that MBPI out-
performs ER and OL right from the beginning, and also betters their asymptotic
performance (Figure 4(b) shows OL continuing until 20, 000 episodes). At 200
episodes, MBPI-1 registers a higher hold time than ER and OL with p-value at
most p < 5 × 10−9, under a single-tailed t-test. The best performance achieved
by MBPI-1 (11.62 seconds, 450 episodes) exceeds those of ER (9.24 seconds,
250 episodes) and OL (9.48 seconds, 11, 000 episodes) with p-value at most
p < 10−13.

The main reason MBPI-1 and ER achieve an order of magnitude gain in sam-
ple complexity over OL is that they make more efficient use of the collected
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Fig. 4. The graphs show on the x axis the number of training episodes; on the y axis
the hold time achieved by some policy. The reported hold time is the average over
200 episodes in which the policy is frozen and executed. For the first 500 episodes of
training, we evaluate the policies at intervals of 50 episodes. The algorithms making
batch updates do so every 50 episodes; they are evaluated immediately after the update.
Each curve is an average of at least 25 independent runs.

experiences through batch updates. The updates made by ER are strictly based
on observed experiences, which reflect the true dynamics of the environment.
Further, only states that are reachable by following the policy used while gener-
ating the experiences get backed up. In contrast, MBPI explores more parts of
the state space by following trajectories randomly generated using the model.
Experiences generated by the (approximate) model are likely to be somewhat
inaccurate, and the states visited along the simulated trajectories may not be
reached in practice. But despite the inaccuracy, the exploration can potentially
result in the discovery of desirable states and thus improve the policy.

Lin [7] compares ER with relaxation planning, a model-based approach in a
discrete, grid-world domain. In case the agents have to learn the model, then
the model-based approach performs worse than ER; however, when the agents
are provided a perfect model to begin with, the algorithms have comparable
performances. In our experiments with 3v2 Keepaway, MBPI-1, under which
the model both has to be learned and used, consistently outperforms ER. We
conjecture that for domains with small state spaces, the observed transitions
may themselves be sufficiently representative of the dynamics of the domain,
but as the size of the problem increases, this may cease to be the case, and
the extrapolation afforded by the model may prove beneficial. In this paper,
it is our intention to compare MBPI and ER on Keepaway by studying them
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in isolation, but in principle, it is possible to combine them by making policy
updates from both observed and simulated transitions. More specifically, it may
be possible to offset the noise introduced by an incorrect model by making
sufficient updates based on true experiences. Section 6 discusses Sutton and
Barto’s Dyna-Q algorithm [12], which takes a related approach.

Figure 4(c) shows the effect of increasing the depth of the simulated trajec-
tories in our model-based algorithm. It seems plausible that deeper trajectories
will enhance the exploration of the state space, boosting performance. On the
other hand, due to the noise in the model predictions, simulated transitions
are likely to deviate more from the true transitions deeper in the trajectory. In
our experiments, we notice that with increasing depth (MBPI-2 and MBPI-3),
the performance of the model-based approach degrades progressively. To dimin-
ish the adverse effect of noise deep in the trajectories, we decay the learning
rates for updates made deeper down, still keeping the sum of the learning rates
along each trajectory constant (at 0.025) so that the comparisons among the
experiments remain fair. Despite using a sharp decay factor (0.01), the perfor-
mance of MBPI-2 and MBPI-3, as seen in Figure 4(c), fall significantly short
of MBPI-1’s. Nonetheless, MBPI-2 (10.96 seconds, 350 episodes) still achieves
higher performance than ER (9.24 seconds, 250 episodes) and OL (9.48 seconds,
11, 000 episodes), with p-values at most p < 2 × 10−3.

Surely, a major reason for the loss in performance when exploring deeper is the
approximation in our model. Since the dynamics of Keepaway are stochastic, a
deterministic model is bound to be inaccurate. Further, the function approxima-
tion scheme used in the model may not be sufficiently expressive. Past efforts in
modeling physical systems have focused on learning precise models, and indeed
modeling environmental noise as well [9]. It is a promising avenue for future re-
search to develop a more accurate model for Keepaway, and examine if it can be
used to plan deeper into the future. Nevertheless, the performance gain offered
by MBPI-1 is evidence that model-based approaches can be viable even with an
approximate model, on a task that is itself continuous and stochastic.

Algorithm 2. Hand-coded Policy (Model M , State s)
1: Anon−terminal ← {a|M.predictTermination(s, a) = false}.
2: if Anon−terminal = ∅ then
3: Return random(HoldBall, PassBall(2), PassBall(3)).
4: else
5: if HoldBall ∈ Anon−terminal then
6: Return HoldBall.
7: else if PassBall(2) ∈ Anon−terminal then
8: Return PassBall(2).
9: else

10: Return PassBall(3).
11: end if
12: end if

In our MBPI algorithm, the learned model is used to update the Q function
through which the action selection policy is interpreted. While this conforms
with the traditional RL approach of learning the Q function, it is not necessary
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for putting the model to use. Algorithm 2 lays out a hand-coded policy that
uses an available model to select the action to take. In fact, this policy only
makes use of the termination predictor of the model, implementing the following
intuitive strategy: from any state, choose HoldBall if the model predicts it will
not terminate the episode. If it is predicted to terminate, try PassBall(2) in a
similar manner, and then PassBall(3). If all actions are predicted to terminate,
simply choose a random one. Note that the hand-coded policy is myopic: it
doesn’t perform lookahead to take actions that will avoid future bad states. In
this way it is handicapped when compared to the learning algorithms.

Figure 4(d) plots the performance of this hand-coded policy. As with MBPI, it
begins with a random model that is updated every 50 episodes; however, the pol-
icy followed in between the updates is the hand-coded policy. After 350 episodes,
this policy registers 9.04 seconds of hold time, which is within 0.5 seconds of the
best reached by OL and ER. The purpose of this experiment is not to highlight
the performance of the hand-coded policy in itself, but to illustrate that a model
can be useful even independent of the action value function. Here, it is necessary
to improve the model iteratively, but one can imagine scenarios where a model
is available from past experiences or adapted from related tasks. A model-based
approach provides the flexibility to re-use parts of the solution in a natural
way. It would be promising as part of future research to adapt the model-based
approach followed here to interact with similar tasks in the RoboCup soccer
domain, for instance, 4v3 Keepaway [11] and Half Field Offense [5]. Another
possible avenue for research is to employ the environmental model as part of a
planning algorithm for solving the task.

6 Related Work

In their expository textbook, Sutton and Barto [12] investigate the relationship
between model-based RL and planning. They present the Dyna-Q algorithm, in
which an environmental model is learned and used to simulate experiences for
updating the Q function along with direct updates based on real experiences.
Dyna-Q is enhanced by using Prioritized Sweeping, a technique whereby the
model-based updates are concentrated around the regions where the Q function
is changing rapidly. The main motivation for our work is indeed to extend the
qualitative results of model-based approaches like those seen in the simple, rel-
atively small, discrete domains considered by Sutton and Barto to a realistic,
high-dimensional, continuous task. Our MBPI algorithm is similar to their Tra-
jectory Sampling method, where model-based updates are based on the on-policy
distribution of experiences. In our case, an ε-greedy policy is used while interact-
ing with the environment, but a random policy is used to generate trajectories
for the model-based updates. The complexity of Keepaway and the real-time
constraints of the RoboCup simulator force us to make model-based updates
off-line, whereas it is possible to make such updates on-line in the example do-
mains used to illustrate Dyna-Q and Prioritized Sweeping.
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In several past efforts of model-based approaches, learning the model is itself
the key issue. Ng et al.[9] successfully learn a model for helicopter control. The
state space is described by 8 body coordinates, and 4 continuous actions serve as
control signals to maneuver the helicopter every 50th of a second. A stochastic
model is learned using locally weighted regression; an action policy is derived
from this model using the PEGASUS algorithm. 3v2 Keepaway has a state space
of higher dimension (13), with states being more temporally distant. Also, ac-
tions are abstract, high-level skills, unlike control signals to the helicopter that
perturb its state smoothly. Additionally, in Keepaway, it is actually necessary to
iteratively gather experiences based on updated versions of the policy (about 5-6
times using MBPI-1) in order to achieve high performance. The helicopter con-
trol policy, on the other hand, is learned based on a single batch of experiences
obtained by a human pilot flying the helicopter.

Other approaches involving modeling physical systems include, among others,
those of Atkeson and Santamaŕıa [2], and Boone [3]. The former investigate a
pendulum swing-up problem with 2 state variables and 1 continuous action;
the latter considers the Acrobot problem, having 4 state variables and 3 discrete
actions. Apart from having fewer state variables and actions, these physical world
tasks have smoother transition dynamics than Keepaway: a key component of
our Keepaway model is the termination predictor, which is not required for the
pendulum and acrobot tasks. Nonetheless, the main results from these tasks
concur with ours – that model-based RL can greatly reduce sample complexity,
while improving the quality of the learned solution.

Experience Replay is a model-free batch learning method due to Lin [7], which
has been applied to Keepaway by Kalyanakrishnan and Stone [6]. The results in
this paper show that our model-based approach registers faster learning and bet-
ter asymptotic performance than experience replay on Keepaway. We compare
and contrast the approaches in Section 5.

7 Conclusion

We examine the viability of using model-based RL for Keepaway, a complex,
stochastic, continuous, high-dimensional, multiagent task. The actions in this
task are abstract, high-level skills that can last variable periods of time, mak-
ing it novel from a model-learning perspective. Our model is partially specified
through simple rules, partially learned, and then used as a subroutine in the RL
algorithm to learn the action selection policy. Empirical results demonstrate that
such a model-based RL algorithm can yield significant gains in sample complex-
ity and asymptotic performance when compared to model-free approaches that
have been applied to Keepaway successfully in the past. Also, we show that a
model can be used effectively with other static policies, lending flexibility to the
learned solution. Problems for future work include improving upon our design of
the Keepaway model, using it for knowledge transfer among related tasks, and
applying it with planning-based approaches.
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Abstract. The control of more than 20 degrees of freedom in real-time
is one challenge of humanoid robotics. The control architecture of an au-
tonomous humanoid robot often consists of two parts, namely a real-time
part that has direct access to the motors or RC servos, and a non-real-time
part, that controls the higher-level behaviors and sensory information pro-
cessing such as vision and touch. As a result motion patterns are developed
separately from the other parts of the robots behavior. In research, partic-
ularly when including developmental processes, it is often necessary that
the design or the evolution of motion patterns is integrated in the overall
development of the robot’s behavior. This is indeed one of the main prin-
ciples of the embodied intelligence paradigm. The main aim of this work is
to define a flexible way of describing motion patterns that can be passed to
the motion controller which in turn executes them in real-time. As a result,
the Harmonic Motion Description Protocol (HMDP) is presented. It al-
lows the motions to be described as vectors of coefficients of harmonic mo-
tion splines. The motion splines are expressed as human-readable ASCII
strings that can be passed as a motion stream. Flexibility is achieved by
implementing the principle of superposition of several motion patterns. In
this way also closed loop control is achievable in principle. Moreover, the
HMDP can be implemented into the (deleted for blind review) project of
the 3D soccer simulation league as a standard way to communicate mo-
tion patterns between the agent and the simulation interface and/or real
humanoid robots.

1 Introduction

Many developers of autonomous robot systems experience difficulties when de-
signing a control system that is at the same time capable of high level sensor
processing, in particular vision sensors, and motor control. The solution is in
most cases a hybrid design using 2 CPUs, one for motor control and one for sen-
sor processing. The sensor data processing is often done by a PC like system with
a broadband multitasking operating system (Windows, Linux) that usually does
not have real-time capabilities. The motor control is done by a micro-controller

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 184–195, 2008.
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that performs predefined motion patterns. The demanded motion pattern is com-
municated between both CPUs in some way, e.g., by serial bus. In particular in
humanoid robots the motion control part has to be a real-time system in order
to avoid jerky motions.

During the development process of the robot’s behavior usually problems arise
from this hybrid design. Whereas a PC-like system is always accessible, ready
for changes, the motor controller can only be accessed via specialized editors
and development tools, debuggers etc. Changes of motor controller programs
can only be realized by flashing the limited memory that is available on the
controller board. The programming of the motor-controller is mostly in done in C
by using many custom definitions that depend on the design features of the motor
controller which vary in dependence of the product line and the manufacturer.
Moreover, the real-time behavior is managed by a series of interrupts that are
again dependent on the type of the controller.

The problems usually result in a development process in which the motion
patterns are developed separately from the design of the overall behavior. This
seems acceptable in robot systems that do not require a big set of motions and
do not have many degrees of freedom.

In humanoid robots, however, this design principle is not really satisfying.
This is particularly true for soccer playing humanoid robots. Whereas humans
have an infinite number of motion patterns available, the typical motion number
of patterns of robots that participate a the RoboCup is normally less then 10,
e.g. strong kick, soft kick, walking, turn, several goal keeper behaviors. A first
step would be to allow for the activation of several motion patterns at the same
time. This can be used for looking for the ball and walking forward independently
in parallel. Furthermore, it can be used to balance out perturbations from the
walking process. Thus, in addition to the normal walking process a weak pattern
can be added that can stabilize the motion pattern. For this purpose it is neces-
sary that the exact phase relation between both motion patterns is controllable.
This is one requirement for the protocol.

Splines and harmonic functions have been used in various projects in different
fields so far. Greszczuk and Terzopoulos [1] describe learning of muscle-actuated
locomotion through control abstraction in order to generate realistic animations
for computer graphics applications. They employ artificial animals with many
degrees of freedom and abstract learned controller functions using Fourier anal-
ysis. These compact controller representations are then synthesized in learning
of higher-level behaviors which benefits from the dimensionality reduced form of
these controllers.

Another example from the field of computer graphics is given in [2]. Here,
Fourier expansions of experimental data of actual human behaviors are taken
as a basis to interpolate and extrapolate locomotion for an animated human
figure. The authors describe how rich variations of human locomotion can be
achieved by superposition of different Fourier expansions. Furthermore, the ab-
straction of the movements allows different parameters of the animation (like
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Fig. 1. Possible implementation of HMDP in a robot environment: Higher level behav-
iors are processed in a Linux micro PC (e.g. Geode). The PC sends motion patterns
over the serial bus to micro controller. They are executed in real time.

e.g. step-length, speed, or hip position) to be controlled interactively to tweak
the resulting animation.

In robotics, we find application of splines e.g. for trajectory generation of
mobile robots (see [3] for the case of controlling an all-wheel steering robot).
The idea of control abstraction for a more compact representation of movements
is realized with different methods, for instance Fourier analysis for cyclic motion
patterns as in [4] or using hierarchical nonlinear principal component analysis
to generate high-dimensional motions from low-dimensional input [5].

In the following section we outline the requirement specifications that follow
from the above mentioned motivations. We then outlined the principle of su-
perposition of motion, its advantages and potential problems in section 3. The
syntax of the HMDP as implemented in our software is described in section 4.
To illustrate the work with the protocol, we provide an example using an exper-
imental graphical user interface in section 5. Finally, we present a possible role
of the HMDP in the 3D2Real project [6], and close with a discussion.

2 HMDP Requirement Specifications

To define the specifications of the HMDP more precisely:

– The HMDP includes messages that are submitted from the PC to the micro-
controller and response messages from the micro-controller to the PC.

– The protocol allows for the PC side to set the current time as an integer
and also to set the maximal time value after which the current time on the
micro-controller is set to zero again.

– The protocol defines motion patterns in terms of splines. In order to allow
for periodic motion patterns that can be repeated an arbitrary number of
times the set of base functions is defined as a set of sines and cosines.

– The protocol activates motion patterns including the information at what
time the motion pattern is activated, and its amplitude. It also defines which
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1Y x Pattern 1
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0
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Y x Pattern 0
0

Resulting motion pattern (schematic)

Fig. 2. Motion superposition: By using HMDP two or more motions can be superposed
by defining the amplitudes Yi and the phase shift φi. The resulting motion pattern is
the sum of both initial patterns.

step of the motion pattern is assigned to what time step of the motion
controller (motion phase assignment).

– The design of the HMDP includes the management of the motion patterns
on the micro-controller side. It is possible to activate several motion patterns
at the same time. The resulting motion pattern is the superposition of all
activated motion patterns (motion superposition principle).

– The protocol allows to read out values of sensors that are connected to the
micro-controller. In particular, it allows to read out the the angle of the servo
positions at a particular time step. The message for a sensor request consists
of a the information of the time at which the sensor value should be read
out and the name of the particular sensor. As soon as the time for read out
is reached the time value the sensor name and the sensor value is sent from
the micro-controller to the PC.

3 Harmonic Motion Splines and Motion Superposition
Principle

In this section we outline the principle with which motion patterns can be ex-
pressed in terms of motion splines; how they can be superimposed and under
which circumstances the superposition of motions is useful.

In the following we discuss the harmonic motion splines for a robot with
A actuators. Currently a mere position control is considered. We have spline
functions that describe motion patterns fp,a(t). These are expressed in terms of
discrete finite series of sine and cosine functions:
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fp,a(t) = c0 +∑
0≤n≤max

c2n+1,a sin(ρ × ωn,p × t) + c2n+2,a cos(ρ × ωn,p×), (1)

where ρ = π
2N , 0 ≤ p < P is the index of the pattern and 0 ≤ a < A the

index of the actuator. The set wave numbers ωn,p is specified when the pattern
is initialized. As a convention of the current HMDP for a specific pattern p it is
identical for all actuators a.

The vector fp(t) = {f1,p . . . fa,p} expresses then the state vector of the robot,
i.e., the positions of all servos, given only the pattern p is active with an ampli-
tude of 1. The final position that is sent to the servo is then:

F(t) =
∑
p<P

Rp(t)fp(t − φp) (2)

Where the amplitude Rp(t) and the offset φp are transmitted when the pattern
is activated. Before the onset or change of the amplitude of a motion pattern the
value φp, Ynew,p, Tstart0,Tstart1 have to be transmitted, Rp(t) is then determined
by

t < Tstart0 : Rp(t) = Yold,p

t ∈ [Tstart0, Tstart1] : Rp(t) = (Ynew,p − Yold,p)/(Tstart1 − Tstart0) × t
t > Tstart1 : Rp(t) = Ynew,p

(3)

In other words the amplitude is changed in a linear way from the previous value
to the current value. However, the value of φp changes at the time Tstart0.

The design makes several types of messages necessary:

– Pattern initialization message: This message determines the ID of the
pattern p. It also sends information about the used wave numbers ωn,p for
all n.

– Coefficient transmission: Since this can be a large set of information and
since the buffer of of the receiving device is limited it seems useful to separate
this type of message from the first message. So in this second type of message
all coefficients ci,a with 0 ≤ i ≤ 2n + 1 and 0 < a < A have to be submitted
in “digestible” message sizes.

– Use Pattern messages: For using the patterns the on set times Tstart0

and Tstart1 as well as the the new amplitude Ynew and φp have to be used.
– Sensor reading commands: Those commands should contain a time value

that specify for the motion controller at what phase of the motion the sensor
value i.e. that potentiometer value of the joint should be read.

– Time managing commands: The time management has to be covered, in
some way. The higher level controller should roughly know the current time
value of the motor controller. The overflow of the time counter needs to be
managed. The increment of the time counter should be changeable.

In the current approach the structures that manage the patterns are organized
in a static manner. Also dynamic ways to storage the patterns seem possible.
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The total motion of the control output according to equation 2 is the super-
position of all active motion patterns in their current amplitude. The virtues
of this superposition might not be directly obvious in the general case. In the
following we go into three different examples where the superposition of motion
patterns is useful.

First, examples for periodic movements: Independent movements concern non
overlapping sets of actuators and are applied by simply running both patterns at
the same time. With respect to humanoid robotics this can be done by looking for
the ball – that is: moving the head and walking at the same time. Both patterns
can have different wave numbers and can be applied completely independent
from each other. Here it is necessary that both movements do not interfere with
each other, e.g., that the limbs collide under certain circumstances. In addition
it is only possible to have one pattern with dynamic effects on the whole body
of the robot active at any time. In the case of walking and looking, only the
walking would have an effect on the dynamic of the whole body of the robot.
This kind of combination is only possible if both movements concern completely
non overlapping sets of joints and one movement pattern leaves the joint that
concerns the other movement in a default position.

The second example would be two movements at the same frequency. Where
the first movement is the default behavior and second movement is a response of
the control to some perturbation. As an example, take vibrations during walking;
these can be damped by adding a regulatory movement on top of the standard
movement.

The third example would be parametric non-periodic movements, like kicking.
Here, the kicking direction can be superposed to a standard kicking behavior.

Limitations of the HMDP approach are closed loop control tasks that require
inevitably control reactions below the limit of the reaction time of the combined
system motor controller higher behavior controller.

4 HMDP Syntax

In the following we describe the set of messages and the way parameters and
numbers are defined.

4.1 Characters Used in HMDP Syntax

It is a subset of the ASCII characters. At the current stage the HMDP uses:
numbers ([0..9,a..f]), capital letters ([A..Z]) and the symbols ∗, <, >, +,-, @ ,!
and &. Carriage return (decimal code 10,13) defines the end of a command line,
after which the line is parsed in the processor.

4.2 Check Sum Feature

All commands can be sent in a check sum mode. The check sum is calculated
as: A = (

∑
i Xi) modulo 16, where A is itself expressed as a hex-value([0-9,a-f]).
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4.3 Long Command Feature

In some microprocessors command lines over 10 digits may become unsafe since
the hardware serial-bus chips provide only a buffer of around 10 characters.
Therefore it seems useful to break long messages down into shorter parts that
are written into the program buffer. An & character at the end indicates that
the current command line is continued after the carriage return. In combination
with the check sum feature messages up to a defined length limit can be sent
safely.

4.4 At-Time Execute Command Feature

With this feature a command - usually a command to read out sensor values -
is executed at a specified time. In the current implementation the slave assumes
that the at-time commands are sent in sequence, i.e., the command that should
be executed first is sent first etc. The slave does not sort the commands and
would wait until the time for the next command in its batch is reached and then
look for the start time of the following at-time command. Thus, if one sends
an at-time command for time 100 and then an at-time command for time 50,
both commands are executed at 100 and 101, respectively. If the time counter
is already behind the time given in the at-time command (like in the previous
example) the command is executed in the next time cycle.

4.5 Types of Numbers

Numbers are transmitted as hex numbers that include the numbers [0..9] and
the letters [A..E]. Currently, three types of numbers are used: integers, rational
numbers, and real values.

– Integers are transmitted as conventional hex numbers.
– Rational numbers are used to express wave numbers. Since most motor-

controllers can only emulate floating arithmetic by software, rationals seem
to be faster than real values. They are expressed by a set of two subsequent
integers.

– Floats are described in a standard semi logarithmic way by transmitting the
exponent and the mantissa as integer values including their signs.

4.6 Internal States

The robot can be set into 3 distinct internal states. Depending on the activated
state different groups of commands have different effects. It is important to note
that if a command is used in the wrong state the real-time property may be
disrupted, the command may have an undesired effect, or no effect at all.

– State 0: The motion machine is deactivated and commands can be directed
towards the motors. Command groups 0,I can be used.
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– State 1: HMDP state. The motion machine is on and overwrites motor com-
mands (group I). Instead the HMDP commands have to be used that control
the motion machine. At-time commands are possible but may interfere with
the timer and therefore the motion may not be precise (lost ticks may ap-
pear).

– State 2: “Plastic” state of the robot. The robot can be set manually into a
state, and keeps the current posture, while changes in the current posture
are possible by applying force to the servos.

4.7 Group 0 Administrative Commands

This group communicates state variables and other information of the current
state of the system. The syntax is usually > XX for a command to the slave
and < XX for requested information. In addition, some commands for copying
motion patterns into the flash memory are provided. Servos can be turned on
and off. For the protection of the servos allowed ranges of position values of the
servos are defined. Zero positions1 can be re-defined, and the list of available
servos can be requested. These commands are typically used when the robot is
in state 0, but can also be used in the other two states. However, in state 2 they
affect the real-time property, and ticks may be lost.

4.8 Group I Static Posture Commands

The commands affect the posture of the robot directly. In state 0 these may be
used to control postures, which is useful in the development phase of the the
motions and in order to calibrate the zero positions. In addition, positions can
be read from the controller. There, the controller can distinguish between the
actual current position and the position that is targeted by the controller.

4.9 Group II HMDP Commands

An HMDP message starts with a systematic set of key characters which simplifies
the parsing of the protocol. An additional initial character in front of every
message can be custom defined in order to make it possible to add HMDP to
already existing messaging systems. Apart from the custom defined header the
first character of each HMDP messages can be either a P, a T, or S, indicating
a time-related, pattern-related or sensor-related command.

5 Example for a Visual Motion Design Tool

We programmed a graphical user interface (GUI) (see Fig. 3) in which the coef-
ficients can be found be defining manually frequencies and support points. The
1 Zero positions are the calibrated values of the servos of a robot in an upright position

and the arms in a certain diagonal angle.
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Fig. 3. Experimental graphical user interface for motion design MotionDesigner: Cur-
rently the wave numbers have to chosen by hand (pink dots). Then a function (black
curve) is interpolated between support points (green dots).

program calculates the coefficients and produces HMDP messages, that define
this particular motion pattern. Coefficients ci are calculated by solving the sys-
tem of equations that are defined by

x(t) = c0 +∑
0≤n≤max

c2n+1,a sin(ρ × ωn,p × t) + c2n+2,a cos(ρ × ωn,p × t). (4)

Since a set xi(Ti) for a certain Ti and all ωn,p are defined by the user, we have
a set of linear equations that can be solved by deriving the pseudo inverse.
In dependence of the ratio between the number of xi(Ti) and the number of
coefficients cj we get an under- or over-defined system of linear equations.

The program currently controls a virtual motion controller. The motion con-
trol part is C-code and can readily be implemented into a standard motion
controller ICs down to the level of PIC chips or similar.

6 Possible Role in the 3D2Real Project

One problem for the RoboCup project is that throughout the leagues a lot
of work is duplicated, and collaboration is rather sparse between the different
leagues. This is not a desirable situation as know-how is not transferred effec-
tively, and progress is slower than it could be since resources are bound to solve
the same problems over and over again. To address this situation, the 3D2Real
project was initiated in 2006.

The main idea of this project is to try and use synergy effects from a collabo-
ration between researchers in the Humanoid and the Soccer Simulation League
(SSL). This collaboration includes a joint road map for the near future of both
leagues, as well as the specification of standards and the development of tools
that can be used in both leagues.
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Traditionally, the SSL and the HL in RoboCup have had rather different re-
search topics. While researchers in the HL mainly worked on the design and
the low-level control of their robots, participants in the SSL were concerned
with high-level strategies and collaboration. In recent years, however, there have
been developments which might bring both leagues closer to each other. In the
SSL, there have been continuing efforts to introduce more realism into the rather
abstract simulation in order to ensure that the developed strategies can be trans-
ferred more easily to real robots. Humanoid robot simulation is the preferred
choice for many participants of the SSL in order to achieve this. In the HL,
on the other hand, the first multi-robot games have been held, and the great
progress in controlling the robots allows researchers to approach issues of col-
laboration and coordination which have been extensively studied in the SSL. In
short, both leagues are beginning to come closer to each other, and joint efforts
in the development of tools and architectures that allow easier transfer of knowl-
edge and technologies could speed up the mutual progress towards the 2050 goal
of RoboCup.

The goal we envision for the 3D2Real project is to have the finals of the soccer
simulation league using real robots by the year 2009 or 2010. For this ambitious
goal several steps are necessary in the next years to create the necessary infras-
tructure and tools. First, the 3D simulator of the SSL [7] has to be completed,
and a real robot prototype has to be implemented as a simulation model, the
XML-based format RoSiML as used in the SimRobot simulator [8] seems promis-
ing. According to the proposed road map, a technical challenge would be held at
RoboCup 2008 to test the ability to use the agent code of SSL participants on
a predetermined real robot. From 2008 until 2009, we propose the development
of a central parts repository (CPR). This would be a collection of real robot
designs, sensor and actuator models, complete robots, as well as controllers for
certain architectures. Participants of both HL and SSL contribute to this repos-
itory according to their expertise and interest. The format would again be the
RoSiML mentioned above. These contributions become a mandatory part for
the HL qualification from 2009, and should be continued (at least) until 2010,
even after the 3D SSL final has taken place using real robots.

The HMDP introduced in this work could be used as a standard for the motion
description of the simulated and the real robots. In the simulation, the agents are
connected to the simulator over the network. This means that they have to send
messages (currently in ASCII strings) back to the simulator in order to specify,
e.g., desired positions for motors. Since many agents connect to the simulator at
once during a game this can lead to a high volume of network traffic that can
cause severe problems for the server. If the HMDP were used for the description
of motion patterns, longer messages describing the motions would only have to
be sent sporadically when new patterns have to be set. Thus, the HMDP would
provide a good solution for very related problems in the 3D soccer simulation
league, and the humanoid league (as described in the introduction), and might
facilitate running the same code on simulated and real humanoids eventually.
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Fig. 4. 3D2Real project: Layout of the control architecture. The hatched boxes show
how the different leagues contribute to the complete system architecture of the 3D2Real
project. The control program for simulation system and real robot system are identical.

7 Discussion

The intention of this work is to provide a standard for the description of motion
patterns for several purposes. It can be seen as an abstract but flexible motion
description protocol in a server and client architecture. Moreover, it can be
used for simulation purposes and at the same time for connection between a
higher-level behavior control unit and a real-time motion controller. Its merits
are biggest in situations where motions patterns should be changed “on-the-fly”,
like in a scenario that uses developmental or evolutionary methods to change the
motion generation, but it also allows for a great flexibility in motion execution
in general.

The representation of motions by Fourier coefficients in the protocol and the
superposition principle are valuable properties for behavior abstraction, i.e., the
synthesis and blending of new, higher-level behaviors from compact representa-
tions of lower-level ones. This is one aspect we want to explore further in the
future, as well as the implementation of currently missing features like variable
time increments, sensor readings, and overflow of time values that can happen
at least theoretically.

Furthermore, the 3D2Real project is one example inside RoboCup where the
HMDP seems to be an appropriate tool. The plan is now to test and improve
the HMDP in dependence on results within the 3D2Real project.



HMDP: A New Protocol for Motion Pattern Generation 195

Acknowledgements

We greatfully acknowledge the support of this work by the Japan Science and
Technology Agency (JST), and a fellowship for young scientists from the Japan
Society for the Promotion of Science (JSPS).

References

1. Greszczuk, R., Terzopoulos, D.: Automated learning of muscle-actuated locomotion
through control abstraction. In: Proceedings of SIGGRAPH 1995 (1995)

2. Unuma, M., Anjyo, K., Takeuchi, R.: Fourier principles for emotion-based human
figure animation. In: Proceedings of the 22nd annual conference on Computer graph-
ics and interactive techniques, pp. 91–96. ACM Press (1995)

3. Howard, T., Kelly, A.: Trajectory and spline generation for all-wheel steering mobile
robots. In: Proceedings of the 2006 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS 2006), October 2006, pp. 4827–4832 (2006)

4. Schmidt, H., Sorowka, D., Piorko, F., Marhoul, N., Bernhardt, R.: Control system
for a robotic walking simulator. In: Proceedings of the 2004 IEEE International
Conference on Robotics and Automation (2004)

5. Tatani, K., Nakamura, Y.: Reductive mapping for sequential patterns of humanoid
body motion. In: Proceedings of the 2nd International Symposium on Adaptive
Motion of Animals and Machines (2003)

6. Mayer, N.M., Boedecker, J., da Silva Guerra, R., Asada, M.: 3d2real: Simulation
league finals in real robots. In: Lakemeyer, G., Sklar, E., Sorrenti, D.G., Takahashi,
T. (eds.) RoboCup 2006: Robot Soccer World Cup X. LNCS (LNAI), vol. 4434.
Springer, Heidelberg (2007)

7. Obst, O., Rollmann, M.: SPARK – A Generic Simulator for Physical Multiagent
Simulations. Computer Systems Science and Engineering 20(5) (September 2005)
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Abstract. Tracked mobile robots with adjustable support tracks or flip-
pers are popular promising solutions for negotiating rough terrain and
3D obstacles. Though many according robot bases are in principle phys-
ically capable of climbing stairs, it is a non-trivial control-task for a
remote tele-operator, especially when the user can not directly see the
robot like in search and rescue scenarios. To limit training requirements
and to ease the cognitive load on operators, respectively to enable fully
autonomous rescue robots, we developed a fuzzy controller for this task,
which adjusts the drive forces and the posture of the flipper. The design
of the controller is guided by observing the strategies of a trained user
when tele-operating a robot with unlimited visual information. In doing
so, an Open Dynamics Engine (ODE) simulation of our robot is used
where the full set of all physical parameters is accessible for analysis.
Based on this data, it is shown in several experiments that the controller
is not only capable of climbing stairs but that it does so in a more efficient
manner than the human user who served as training model.

1 Introduction

There are many different options for locomotion systems, each with its par-
ticular pros and cons. Also within search and rescue robotics, many different
approaches are used (figure 1), ranging from wheeled over legged to serpen-
tine systems [1][2][3][4][5][6][7]. But tracked locomotion is often considered to be
the most versatile locomotion system in difficult environments as it can handle
large obstacles and loose soil, hinders and small holes and ditches. Compared to
e.g. wheeled system, a tracked system can also develop higher thrust or gross
traction force particularly for the operation over weak terrain [8]. This type of
locomotion is the most suitable to surmount obstacles, negotiate stairways, and
is able to adapt to terrain variations [9][10]. For unstructured environments, e.g.,
a collapsed building, a construction site, tracked locomotion might hence be the
most suitable choice. Accordingly, there are various tracked robots have been
employed for hazard missions [11][12][13][14][15].
� Previously International University Bremen (IUB).

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 196–207, 2008.
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Fig. 1. Examples of the different locomotion approaches for rescue robots: Gryphon-I,
Genbu, CUL robot system, Quadruped Jumping Robot, Scout robot, MOIRA, and
Marsupial robots [1][2][3][4][5][6][7](from left to right, top to bottom)

But it is almost impossible to select the right parameters for a single pair of
tracks. Sometime the footprint of the robot and hence the length of the tracks
should be small, for example when negotiating narrow passages. The footprint
should on the other hand be large for climbing large obstacles like slopes or
stairs. The common solution to this problem is to use additional tracks that can
change their posture relative to the main robot body. Examples of variable con-
figuration robots are shown in figure 2. They are successful in many application
domains related to rescue robotics [16][17][18] including the RoboCup rescue
league [19,20,21][22,23,24].

Fig. 2. Variable tracked configuration robots [16]: Pandora [17], AURORA [18], link-
type tracked vehicle [25], and NUGV [26]

All aforementioned systems are designed and used for teleoperation. But
though these systems are in principle very capable, it is sometimes tremendously
hard to negotiate obstacles when the operator can not directly observe the robot.
This even holds for commercial systems used in the military domain as indicated
by the results of the European Land Robotics Trial 2006 [27]. Intelligent high
level motion control is hence of interest. An according functionality can be used
to relief the operator, respectively to allow for autonomous operations.
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2 The Locomotion System of Jacobs Robotics

The work presented here is based on the “rugged robot” or short rugbot plat-
form [28]. It is a variable configuration robot with a special support track or
flipper. The flipper mechatronics are based on a special design, which make it
particularly robust against shocks and requires smaller joint forces than other
state of the art designs. The underlying design and its implementation are de-
scribed in detail in [29]. Rugbots are capable of climbing stairs (figure 3) and
various other obstacles including random step fields. But we also experienced
that there is a tremendous difference between “the robot is in principle capable
of climbing stairs” and “a remote operator can climb stairs with the robot”. The
first statement refers to situations where the operator can see the robot from a
global perspective much like the view in figure 3. Then, stair climbing is rela-
tively easy. It is on the other hand much more difficult if this is to be done by a
remote operator who is only provided with the sensor views of the robot itself.
Hence, autonomous negotiation of complex obstacles is not only of interest for
pure fully autonomous operations but also to assist teleoperation.

There are two main disadvantages when doing experiments with autonomous
motion control over complex obstacles in the real world. First, crucial properties
of the interaction between the system and its environment are very difficult to
measure. Especially, contact forces, energy efficiency, etc. are difficult to measure
with decent accuracy and meaningful spatial and temporal resolution. Second,
experiments in the early testing phase can easily go wrong and pose high risks
for the robot as well as the experimenter, e.g., when the robot falls from the
stairs. Third, it is very tedious to test the system with various environment
parameters, e.g., step widths of stairs, let alone to do this in an exhaustive and
controlled manner. A commonly used strategy for the design process under such
circumstances is hence in general to start with a high fidelity physical simulation.

Here, the Open Dynamics Engine (ODE) [30] is used. Open Dynamics Engine
(ODE) is an open source, high performance library for simulating articulated
rigid body dynamics, e.g. ground vehicles, legged creatures, and moving ob-
jects in virtual environments. ODE is platform independent with an easy to use

Fig. 3. Rugbot climbing stairs in its teleoperation mode (from left to right, top to
bottom)
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Fig. 4. Rugbot’s model in ODE

Fig. 5. Examples of obstacles: stairs (left) and a random step field (right)

C/C++ API. It is designed to be used in interactive or real-time simulation. Its
major features are:

– ODE uses a highly stable integrator, so the simulation errors should not grow
out of control. ODE emphasizes speed and stability over physical accuracy.

– ODE has hard contacts. This means that a special non-penetration con-
straint is used whenever two bodies collide.

– ODE has a built-in collision detection system that provides fast identification
of potentially intersecting objects, through the concept of spaces.

There are two main components in ODE: a dynamics simulation engine, i.e.,
world and rigid body, and a collision detection engine, i.e., space and geom
(geometry object). The first has the information about the position, velocity,
and mass of the rigid body. The latter is given information about the shape of
each body. For the first engine, a body is an object which is affected by forces,
while a geom of the second engine is an object that can collide with other geoms.
A body and a geom together represent all properties of a simulated object.

The composition of rugbot’s body in the simulation are a main body, a flipper
ball screw, and four locomotion belts. There are six bodies in the simulation:
rugbot main body, four wheel bodies, and a flipper body. Four hinge-2 joints
are used for connecting four wheels to the rugbot main body, while the flipper
is connected to rugbot via a hinge joint. The overall configuration can be seen
in figure 4. To drive a force is applied to the body and torque is applied to the
four hinge-2 joints with a fixed speed. The driving force of comes hence from
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the force on rugbot’s body and the torque of the joints. Autonomous driving
requires the adjustment of the driving force and of the posture of the flipper.
The environment features several obstacles including stairs, ramps and a random
step fields (figure 5).

3 Mimicking Human Operators

The intelligent motion controller is separated in two levels: high-level control
and low-level control systems. The high-level controller is based on fuzzy logic
[31][32], which is a popular choice for this kind of task [33]. The low-level con-
troller is in charge of handling the motors, especially for the flipper. It is based
on PID controllers and its behavior has also been intensively studied. Note that
the modeling of the robot was done down to a detailed physical simulation of
the motor properties. As the low-level controller operates on a different, much
faster time scale than the high level controller, it is neglected in the rest of this
paper.

The main idea for the design of the high level controller is to observe the
control patterns used by a human operator who has “perfect” information about
the situation of the robot. These control patterns are then turned into fuzzy
control laws, which are autonomously carried out by the robot.

Fig. 6. The relation between the z position and the driving force as measured in a
teleoperation run when climbing stairs; the arrows and numbers indicated the sequence
of changes by the operator over time

Figure 6 shows for example the relation between the z position and the driving
force in a typical teleoperation run when climbing a stair. This type of data was
collected over multiple runs. The operator had each time a best possible view,
i.e., optimal information about the situation of the robot. Similarly, figure 4
shows the relation between the pitch angle and the flipper angle. This data was
then used for designing the high level controller.

The high level controller consists of two fuzzy logic modules, one for the
driving force and one for the posture of the flipper. Both run in parallel in the
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Fig. 7. The relation between the pitch angle and the flipper angle measured in teleop-
eration run when climbing stairs

Fig. 8. The input fuzzy set of the driving force controller in x direction (left). The
output fuzzy set of driving force controller: the rate of driving force (right).

spirit of behavior-oriented control. The fuzzy controller for the driving force was
implemented first as it is a prerequisite for designing the fuzzy controller for the
flipper.

The inputs of the driving force controller are the changing rate of locomotion
in x and z directions, i.e., Δx and Δz. Based on the analyzed data, the input
fuzzy sets were defined as shown in figure 8. The output of the controller is the
rate of driving force, ΔF (figure 8). Both Δx and Δz have three membership
sets each. Each membership also has the same values (unit: m per sampling
time): zero, plus at 0.02, and negative at -0.02. The rate of driving force also
has three membership sets (unit: N): zero, plus at 5, and minus at -5. The
fuzzy rules, based on Mamdani fuzzy rules type, are shown in the table 1 The
fuzzy inference method to find the output for each rule is based on the Mamdani
minimum reference method. An output fuzzy set is converted to be a real number
by using center-of-gravity method for singletons [34][35].

As mentioned before, the second fuzzy logic module of the high level controller
adjust the posture of the flipper. It runs in parallel to the drive force controller.
The inputs for the flipper fuzzy controller are the pitch angle of Rugbot, α,
and its rate, Δα. The output is the rate of the moving angle of the small track
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Table 1. Fuzzy rules for the driving force fuzzy controller

Δx Δy ΔF

negative negative positive
negative zero positive
negative positive positive
zero negative negative
zero zero positive
zero positive positive
positive negative zero
positive zero negative
positive positive zero

Fig. 9. The input fuzzy sets of the flipper fuzzy controller: the pitch angle of the robot
and its rate

Fig. 10. The output fuzzy set of the flipper fuzzy controller: the rate of flipper angle

relative to the ball screw that drives the mechanism, ΔθF . The fuzzy sets of
inputs and output are shown in figures 9 and 10 respectively.

The pitch angle has seven membership sets (unit: degree): zero, most plus at
30 (+ + +), more plus at 15 (+ +), plus with 5 (+), most negative at -30 (- - -),
more negative at - 15 (- -), and negative at -5 (-). The rate of pitch angle has
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Table 2. Fuzzy rules for the flipper fuzzy controller

Δα

negative zero positive

α ΔθF ΔθF ΔθF

- - - + + -
- - + + + + + - - -
- zero zero zero

zero zero zero zero
+ - - - zero zero

+ + zero + + +
+ + + zero + + + +

three membership sets (unit: degree per sampling time): zero, plus at 0.3, and
minus -0.3. The rate of flipper angle has seven membership sets (unit: degree
per sampling time): zero, most plus at 0.4 (+ + +), more plus at 0.2 (+ +),
plus with 0.1 (+), most negative at -1.2 (- - -), more negative at - 0.6 (- -), and
negative at -0.2 (-). Based on Mamdani fuzzy rules type, the fuzzy rules of the
controller are defined as in the table 2:

By using the Mamdani minimum reference method for inference and the
center-of-gravity method for singletons for deffuzification, we got the results
of the controller as shown in figure ??.

4 The General Performance

The autonomous controller was intensively tested in various experiments. First
and foremost, it is indeed successful in reliably moving the robot stairs up and
down without any human intervention. The robot adjusts its driving force and
flipper posture such that its center of gravity is supported, it gets good traction,
and that it moves in the desired direction.

Fig. 11. The autonomous controller moves the robot reliably up on stairs (from left to
right, top to bottom)
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Fig. 12. The relation between the z position and the driving force when climbing a
stair in an autonomous run (left). The relation between the pitch angle of the robot
and the flipper angle while driving in autonomous mode (right).

Fig. 13. The controller was designed based on observing the inputs of human op-
erators during stair climbing. But it generalizes to other obstacles. Here, the robot
autonomously negotiates a Random Step Field with the controller (from left to right,
top to bottom).

Second, it does so more effectively than a human operator does. Concretely,
the overall amount of forces, i.e., the energy put into the system, is smaller when
the autonomous controller is driving the robot compared to cases when a human
operator does exactly the same task. Note that this already holds for the case
where the human operator has “perfect” visual information about the robot, i.e.,
the operator can freely place his viewpoint in the environment. The quantitative
amount of this increased effectiveness is of course user and mission dependent.
Butthe qualitative properties of this effect can be seen when comparing human
control (figures 6 and ) with the autonomous one (figure 12). It can be noticed
that the autonomous controller causes much smoother changes. This benefit is
also well-known from other applications of fuzzy logic to control.

Finally, there are important results with respect to the general usefulness of
the controller. It has been designed based on observations of human operator
input during tele-operated stair climbing. This is an important, but nevertheless
very specialized type of locomotion task. On the other hand, the nature of the
task comprises of all basic challenges, namely adjusting the center of gravity,
making contact with support points for sufficient traction, and adjusting the
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driving force, which can be found for any other obstacles. And it indeed turned
out that the controller does well on other obstacles as well, including ramps and
as difficult terrain as modeled by Random Step Fields (figure 13).

5 Conclusion

A fuzzy controller for autonomous negotiation of stairs was presented. The main
idea for the design of the controller is to observe the control patterns of human
operators during tele-operation under optimal conditions, i.e., with “perfect”
visual information. The controller is tested in an ODE simulation with a de-
tailed physical model of the robot and various environment parameters. The
autonomous controller is first of all capable of driving the robot up and down
stairs. Second, it is not only very reliable in doing so, but it outperforms hu-
man operators in terms of efficiency. Finally, the autonomous controller seems
to generalize very well as it manages to also move the robot autonomously over
other obstacles including random step fields.
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Abstract. Within a group of cooperating agents the decision making
of an individual agent depends on the actions of the other agents. A lot
of effort has been made to solve this problem with additional assump-
tions on the communication abilities of agents. However, in some real-
world applications, communication is limited and the assumptions are
rarely satisfied. An alternative approach newly developed is to employ
a correlation device to correlate the agents’ behavior without exchang-
ing information during execution. In this paper, we apply correlation
device to large-scale and spare-reward domains. As a basis we use the
framework of infinite-horizon DEC-POMDPs which represent policies as
joint stochastic finite-state controllers. To solve any problem of this kind,
a correlation device is firstly calculated by solving Correlation Markov
Decision Processes (Correlation-MDPs) and then used to improve the
local controller for each agent. By using this method, we are able to
achieve a tradeoff between computational complexity and the quality of
the approximation. In addition, we demonstrate that, adversarial prob-
lems can be solved by encoding the information of opponents’ behavior
in the correlation device. We have successfully implemented the proposed
method into our 2D simulated robot soccer team and the performance
in RoboCup-2006 was encouraging.

1 Introduction

Multi-Agent systems often require coordination to ensure that a multitude of
agents will work together in a globally coherent manner under uncertainty. For
some problems, each self-organizing agent has to cooperate to optimize a joint
reward function, while having different local observations and limited communi-
cation [Kaelbling et al., 1998]. RoboCup [Kitano et al., 1997] is a good example
of a cooperative multi-agent system in which the soccer-playing robots like hu-
man soccer players have to coordinate their actions by different limited messages.

The infinite-horizon Decentralized Partially Observable Markov Decision Pro-
cess (DEC-POMDP) framework is one way to model these problems. And
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Bounded Policy Iteration (BPI) [Bernstein et al., 2005] is currently the lead-
ing approximate algorithm which guarantees both bounded memory usage and
monotonic value improvement for all initial state distributions. It defines a joint
controller to be a set of local controllers along with a correlation device. On
each iteration, a node is chosen from one of the local controllers or the corre-
lation device, and its parameters are updated through the solution of a linear
program. Namely, an iteration is guaranteed to produce a new controller with
value at least as high as the old for every possible initial state distribution. A
major drawback of this approach is that it scales exponentially in the number
of agents. When we apply it to our soccer simulated team, it can be very slow
for the major characteristic of sparse-reward structures which means the joint
reward functions are zero everywhere, except for a few states.

In this paper, we just go one step further by developing an alternative ap-
proach to handle large-scale DEC-POMDPs with sparse-reward structures.Our
new method which aims to reduce, as efficiently as possible, the runtime, solves
these problems as follow: a correlation device is firstly calculated by solving
Correlation Markov Decision Processes (Correlation-MDPs) and then used to
improve the local controller for each agent. Our experimental results show its
efficiency and it runs substantially faster, which achieves a tradeoff between
computational complexity and the quality of the approximation.

The rest of the paper is organized as follows. The next section gives some
comparison of the related works. After that, the DEC-POMDP model, and the
basic idea of BPI are introduced. Then, we present our new algorithm and some
experimental results in the RoboCup domain.

2 Related Work

Over the last six years, researchers have proposed a wide range of optimal and
approximate algorithms for decentralized multi-agent planning. In this paper we
focus on cooperation aspect. One important class of algorithms is called MAA*: A
Heuristic Search Algorithm for Solving Decentralized POMDPs [Zser et al., 2005],
where multi-agent A* (MAA*), the first complete and optimal heuristic search
algorithm for solving decentralized POMDPs with finite horizon was presented.
But the algorithm runs out of time very quickly, because the search space grows
double exponentially.

The previous approach that is closest in spirit to ours is called Team coor-
dination among robotic soccer players [Matthijs et al., 2002]. It is based on the
idea of dynamically distributing roles among the team members and adds the
notion of a global team strategy (attack, defend and intercept). Utility func-
tions are used for estimating how well suited a robot is for a certain role. But
inconsistencies sometimes occur.

A DEC-POMDP can also be seen as a partially observable stochastic game
(POSG) with common payoffs [Emery-Montemerlo et al., 2004]. In this approach,
the POSG is approximated as a series of smaller Bayesian games. Interleaving
planning and execution, this algorithm finds good solutions for short horizons, but
it still runs out memory after horizon 10.
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3 The DEC-POMDP Model and BPI Algorithm

The family of Markov decision processes describes discrete stochastic systems
that evolve under the influence of one or multiple controllers. With each transi-
tion of the system is associated a reward value, the objective of the controller is
to select precisely a sequence of actions that maximizes the collection of rewards
in the long run. For the case of several distributed but cooperative controllers,
their objective is to act selfishly as to maximize the reward collected by the
team.

3.1 The DEC-POMDP Model

We base our work on the DEC-POMDP framework introduced by Bernstein
[Bernstein et al., 2002], although alternative definitions are equally allowed.

Definition 1 (DEC-POMDP). An n-agent DEC-POMDP is given as a tuple
〈I, S, {Ai}, {Oi}, P, R〉, where

– I is a finite set of agents indexed 1, ..., n
– S is a finite set of states
– Ai is a finite set of actions available to agent i and −→

A = ×i∈IAi is the set
of joint actions, where −→a = 〈ai, ..., an〉 denotes a joint action

– Oi is a finite set of observations for agent i and −→
O = ×i∈IOi is the set of

joint observations, where −→o = 〈o1, ..., on〉 denotes a joint observation
– P is a set of Markovian state transition and observation probabilities, where

P (s′,−→o |s,−→a ) denotes the probability that taking joint action −→a in state s
results in a transition to state s′ and joint observation −→o

– R : S ×−→
A → R is a reward function

In this paper, we consider the case in which the process unfolds over an infinite
sequence of stages, At each stage, all agents simultaneously select an action,
and each receives the global reward and a local observation. The objective of
the agents is to maximize the expected discounted sum of rewards received. We
denote the discount factor γ and require that 0 ≤ γ < 1. In order to be optimal,
the Markov assumption requires a policy to depend on the whole information
available to the agent at time t, namely its complete history of past observa-
tions and actions. For infinite horizon problems however, this would require a
controller to have infinite memory, which is not always possible. Therefore, our
algorithm uses stochastic finite-state controllers (FSCs) to represent policies.

Definition 2 (FSC). A stochastic finite-state controller (FSC) is a policy graph,
defined as a tuple 〈Qi, ψi, ηi〉, where

– Qi is a finite set of controller nodes
– ψi : Qi → ΔAi is an action selection function
– ηi : Qi × Ai × Oi → ΔQi is a transition function
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The functions ψi and ηi parameterize the conditional distribution P (ai, q
′
i|qi, oi).

For the case of decentralized problems with multiple controllers, the goal is it to
find a set of FSCs, one for each agent, such that their concurrent execution max-
imizes the expected discounted sum of rewards received.The agents’ controllers
determine the conditional distribution P (−→a ,−→q ′, |−→q ,−→o ).

Recently, a memory-bounded dynamic programming algorithm was proposed
for infinite-horizon DEC-POMDPs [Bernstein et al., 2005] . It extends a joint
controller to allow for correlation among the agents. To do this, an additional
finite-state machine, called a correlation device is introduced, which provides ex-
tra signals to the agents at each time step. The device operates independently of
the DEC-POMDP process, and thus does not provide the agents with informa-
tion about the other agents observations. By using correlated joint controllers,
higher value can be achieved than with independent joint controllers of the
same size.

Definition 3 (Correlation Device). A correlation device is a tuple 〈C, ψ〉,
where

– C is a set of states
– ψ : C → ΔC is a state transition function

To improve a correlated joint controller, either the correlation device or one
of the local controllers can be changed. Both improvements can be done via a
bounded backup, which involves solving a linear program.

Following an improvement, the controller can be reevaluate through the solu-
tion of a set of linear equations. It has been proofed that performing either of two
updates cannot lead to a decrease in value for any initial state distribution. The
runtime is polynomial in the sizes of the DEC-POMDP and the joint controller,
but exponential in the number of agents.

However, in large-scale and sparse-reward domains, improving the correlation
device is very difficult because of the characteristic of sparse reward structures.
It can take a very long time for rewards to propagate to distinct states. Thus, it is
often possible to get no improvement for just a few of steps. Long steps of search
is rather inefficient for large scale problems such as RoboCup. It is obviously
worse if multiple choices exist at each state. For example, in the decision making
of the RoboCup 2D Simulation League, agents gain non-zero reward for their
joint defense actions only when some agent of the team kicks or tackles the ball.
Currently, most of the opponents process ball with high quality. Thus, it usually
takes thousands of time steps to steal the ball for opponents.

4 Dynamic Programming for Correlation-MDPs

In this section, we describe the Dynamic Programming (DP) algorithm to calcu-
late the correlation device as an approximate alternative to BPI. This method,
analogous to the belief propagation, operates by solving a MDP, which can be
regarded as a rewards propagation process. For sparse reward structures, each
distinct state will have non-zero reward after the DP algorithm.
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We can translate the above method to our multi-agent decision making prob-
lem by giving the correlation device a concrete meaning.

Definition 4 (Correlation Device State). A correlation device state c ∈ C
is a set of joint actions1, where ∀−→a1,−→a2 ∈ c, |R̄(−→a1)− R̄(−→a2)| ≤ ε and R̄(−→a ) is the
reward function. The reward function for c is R(c) = max−→a ∈cR̄(−→a ).

Thus, how to compute the correlation device states is the main job of our method.
In RoboCup 2D defensive decisions, the majority of the joint actions has no
immediate rewards, or in other wards, it is very difficult in the immediate direct
rewards given when the proceeds are sparse reward structures. Only when all
opponents can not process the ball any longer, our agents make that defensive
effectiveness and have non-zero reward. Running for a better opponent team,
it may need to spend tens, hundreds or even more of the cycles to reach this
ultimate goal. So far, solving this type of DEC-POMDP problems with the
existing methods is not very satisfied.

In the DEC-POMDP model, the reward function R(s,−→a ) indicates that joint
actions should link to a particular state for the need to obtain rewards. Thus,
the pairs of specific state and joint actions which have the maximum rewards
can be certainly established. In RoboCup 2D defensive decisions, the structure
of rewards is sparse. In order to assess the states of those with zero reward,
first is to be done with the goal of state to propagate the reward to distinct
states. The propagation process can be described by the following definition of
Correlation-MDPs.

Definition 5 (Correlation-MDP). A Correlation-MDP is given as a tuple
〈S̄, Ā, P̄ , R̄, γ〉, where

– S̄ is the set of states of the DEC-POMDP model
– Ā = ×i∈IAi is a set of joint actions
– R̄ : S → � and R̄ = maxa∈Ā{R(s,−→a )}, where R(s,−→a ) is the reward func-

tion of the DEC-POMDP model
– P̄ : S × S → [0, 1] can be defined:

P̄ (s′|s) =
P (s′) · P (s|s′)∑

si∈S P (si) · P (s|si)
2 (1)

where P (s|s′) = max−→a ∈Ā{P (s|−→a , s′)}, P (s|si) = max−→a ∈Ā{P (s|−→a , si)},
P (s′) and P (si) are the probability of s′ and si

– γ is the discount factor

A Correlation-MDP compared to the original DEC-POMDP can be viewed
as a reverse model. What Correlation-MDP considers is the shift from the target

1 Note that a correlation device is a finite-state machine, any reasonable definition of
the states is allowed.

2 Known as Bayes formula.



Solving Large-Scale and Sparse-Reward DEC-POMDPs 213

state to the initial one. However, in light of a DEC-POMDP model, it can only
provide such a probability P (s′,−→o |s,−→a ), which is from the initial state to the
target after the execution of joint actions. And the equation (1) is one of the
possible solutions (from P (s|s′) to P̄ (s′|s)). In our model, P (s′) and P (si) are
the probability of s′ and si, which can be used to control the emergence of
a particular state (for example, in the area of inside and outside penalty, the
strategy for both is different in the RoboCup 2D simulation league). It is easy
to encode the information of opponents behavior into the correlation device in
this way. Solving a Correlation-MDP means finding a policy π : S̄ → Ā that
maximizes the expected reward for each state s ∈ S̄. In fact, the whole process
is to build a tree from a root which is the target of the strategy. For the sake
of better understanding this process, let us consider a simplified example of a
soccer defense situation in Fig. 1. and the tree built by the DP algorithm is in
Fig. 2.

C

A

B

Fig. 1. White circles represent our members, and black ones represent opponents A
(the top one), B (the middle one), C (the bolttom one). Each agent only has four type
of actions: (formation), (mark, A), (mark, B), (mark, C). The target is to make all the
opponents marked. Our side is left in the pitch.

In order to control the time complexity and precision we define maxChildren
to limit the maximum number of children for each parent. Algorithm 1 shows
the pseudo-code of the DP algorithm.

Proposition 1 (Algorithm 1). The Algorithm 1 has a linear space com-
plexity with respect to the maxChildren, and the worst case time complexity is
O(maxChildren × |S̄|2).

Proof. The main loop of the algorithm (line 5-14) depends linearly on the size of
S̄. Inside this loop, the remaining critical operation is in line 9, where the children
of each node is updated. Once the variable maxChildren is fixed, the number
of the children per node is not more than it. In every iteration of the algorithm,
no more than maxChildren subtrees are constructed. In the worst case, each
node has to search all of the states to update its children, therefor, the upper limit
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Fig. 2. The value of nodes is R̄(s), and the value of edges is P̄ (s′|s). The discount factor
is 0.9. The black circle means the opponent is marked, while the white one means not.
Note that, in Fig. 1, the easiest action is to mark B, then is to mark A, and to mark
C is the most difficult. Obviously the best defense strategy (Marking all the opponent
successfully at the same time is usually impossible) should be marking C first, then
A, and B finally. And the worst one may be marking A first, then B, and C finally,
because the final step is much difficult by following this strategy: Opponent C may
control the ball at that time and pass it to A or B, which is very dangerous in some
case.

Algorithm 1. Compute the policy tree (correlation tree) Qt+1

1: Q0 ← initialize all states in S̄ as a tree
2: for each s ∈ S̄, V0(s) ← R̄(s)
3: maxChildren ← max number of children for the tree
4: t ← 0
5: loop:
6: t ← t + 1
7: for each s ∈ S̄, do {
8: Qt+1 ←fullBackup(Qt)
9: find a set S′ from S̄ to satisfy:

– ∀s′′ ∈ S̄ − S̄′, s′ ∈ S̄′ P (s|s′′) ≤ P (s|s′)
– ∀s′ ∈ S̄′R(s′) + Vt(s) · P̄ (s′|s) ≤ Vt(s

′)
– |S̄′| ≤ maxChildren

10: Vt+1(s
′) ← R(s′) + Vt(s) · P̄ (s′|s) for each s′ ∈ S̄′

11: Vt+1(s
′′) ← Vt(s

′′) for each s′′ ∈ S̄ − S̄′

12: Qt+1 ← set s as the parent of each s′ ∈ S̄′, set each s′ ∈ S̄′ as the children of s.
13: }
14: until maxs|Vt+1(s) − Vt(s)| < ε
15: return Qt+1

for the construction is equal to maxChildren|̇S̄|. By choosing maxChildren
appropriately, the desired upper limit of the tree length can be per-set, no more
than |S̄|. Thus, the amount of space grows linearly with maxChildren. For the
worst case, this is O(maxChildren × |S̄|2).
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Although the worst case time complexity is O(maxChildren × |S̄|2), the av-
erage time complexity is much smaller. Increasing the value of maxChildren
generally leads to both higher accuracy and time complexity on average. In
practice, maxChildren is usually necessary to achieve a tradeoff between compu-
tational complexity and the quality of the approximation. When maxChildren
is equal to |S̄|, every iteration of Algorithm 1 needs to consider all the possible
states, which is the same as a linear program of BPI. The size of these states
is exponential in the number of agents. A more detailed analysis of the DEC-
POMDPs shows that most of the states are useless, especially with sparse reward
structures.

According to the tree computed by Algorithm 1, the correlation device can
be calculated easily. In general, the assumption below holds: Only when an
agent finds a better, or when it finds higher reward cooperation strategy, the
current one is changed. It means a rational agent will not choose the worse forms
of cooperation from its own local observation. In the RoboCup 2D defensive
decision making, an agent in the next step would be impossible to choose a
strategy, although in accordance with their own local observation such a strategy
might be possible, from the perspective of cooperation it is not likely to exist
such a big leap. An upper bound estimate for the reward can be established by
the tree calculated above.

Proposition 2 (Algorithm 2). The Algorithm 2 returns the near-optimal
value for P (c′|c), which is proportional to maxChildren

|S| .

Proof. The usage of P (c′|c) is to correlate the joint controllers in BPI. According
to BPI, the procedure for improving the correlation device works by looking for
the best parameters satisfying the following inequality:

V (s,−→q , c) ≤
∑
−→a

P (−→a |c,−→q )[R(s, a)+γ
∑

s′,−→o ,−→q ′
,c

P (−→q ′|c,−→q ,−→a ,−→o )·

P (s′,−→o |s,−→a ) · P (c′|c)V (s′,−→q ′, c′)] (2)

for all s ∈ S and −→q ∈ −→
Q .

Note that if R(c′) > R(c), the value of P (c′|c) is definitely high by the con-
crete meaning of c′ and c, since the inequality (2) implies that V (s,−→q , c) >
V (s′,−→q ′, c′) is not allowed. The basis of the computational process of Algo-
rithm 2 is an ideal tree constructed by Algorithm 1 in which each state has
the largest reward propagated from the target. For each node of the tree, the
value of its parent is the upper bound of the possible rewards for the next step.
Therefore, the rewards which could be calculated for the next step during exe-
cution time will range between current rewards and the upper bound. And the
process of Algorithm 2 is just on the premise that the information about agents
local observations is unavailable and gives P (c′|c) a reasonable approximation
of the distribution while ensuring the inequality (1) non-reducing. This guar-
antees the near-optimality of the solution. In the process of Algorithm 2, if
maxChildren = |S̄|, all possible states need to be examined, which is the same
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Algorithm 2. Compute the state transition function p(c′|c)
1: Q ← a pre-computed correlation tree by Algorithm 1;
2: S0 ← all of the nodes in Q with the value V (s) : |V (s) − R(c)| ≤ ε
3: S1 ← ∅, S2 ← ∅
4: δ ← 0, γ ← 0
5: for each s ∈ S0 {
6: δ ← δ + V (s) · 1
7: if(|V (s) − R(c′)| ≤ ε) γ ← γ + V (s) · 1
8: s′ ←the parent of s
9: S1 ← S1 ∪ {s′}

10: δ ← δ + V (s′) · P̄ (s|s′)
11: if(|V (s′) − R(c′)| ≤ ε) γ ← γ + V (s′) · P̄ (s|s′)
12: S′ ←all the children of s′ except s
13: for each s′′ ∈ S′{
14: if(R(c) − V (s′′) ≤ ε){
15: S1 ← S1 ∪ {s′′}
16: δ ← δ + V (s′′) · P̄ (s′′|s)

P̄ (s|s′)

17: if(|V (s′′) − R(c′)| ≤ ε) γ ← γ + V (s′′) · P̄ (s′′|s′)
P̄ (s|s′)

18: }
19: }
20: }
21: return γ

δ

as a linear program for BPI, and if maxChildren < |S̄|, a lot of states which are
useless for the target will be eliminated. Thus, the algorithm works efficiently
and the precision is proportional to maxChildren

|S̄| .

In Algorithm 2, by choosing the value of maxChildren, the states which make
small contribution to the goal have not been carried out in order to reduce the
amount of calculation while guarantee high accuracy. This technique is effective,
especially for the sparse reward domain. Further analysis of the RoboCup 2D
defense problem shows that many joint actions for a special state are useless. BPI
algorithm gives these useless joint actions the same needs of assessment, while
our algorithm takes full account of this characteristic, thereby maintaining the
high accuracy with a substantial amount of the reduction of the runtime. The
parameters maxChildren present an important trade-off: its increase generally
increases both precision and runtime. Thus, we can examine this trade-off and
identify the best parameters for concrete problems. Though we are not able to
give theoretically strict proof on this issue and the exact solution for the accuracy
of the two algorithm in this paper, the following experiments proved that our
approach is more effective.

Although Correlation-MDPs are very usefull for our soccer robot team, it has
two limitations when extended to other applications. Firstly, it requires initial
state distribution as input. Secondly,the joint actions of agents and their effort
should be easily modeled.
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5 Experiments

We performed an experimental feasibility study in RoboCup domain that com-
pares our algorithm and BPI [Bernstein et al., 2005], currently the leading algo-
rithm for solving infinite-horizon DEC-POMDPs with quality guarantees. Below,
we describe our experimental methodology, the specifies of the problems, and our
results.

As noted above, the correlation device operates independently of the DEC-
POMDP process. Thus, the experiments took place in two phases. First, either
our algorithm or BPI was run to calculate the correlation device. Secondly,
the correlation devices were used to improve local controllers with the some
improving procedure.We applied both the BPI and our algorithm to compute the
correlation device offline. In BPI we first chose a device node c, and considered
changing its parameters for just the first step. New parameters must yield value
at least as high for all states and nodes of the other local controllers. For our
algorithm, we applied a Correlation-MDP model for all states, and calculated it
with some high reward states fixed3 . Then the correlation device was born by
Algorithm 2. The computation is performed offline in a centralized way and
the final solution is a correlation device which can then be executed by multiple
agents in a decentralized way.

In order to encode the information of opponents behavior, we use some learn-
ing methods [Ubbo Visser et al., 2003] to determine the value of P(s) in Equa-
tion (1). For example, some opponents prefer attacking from the midway, then
the probability of midway defending states will be increased; while some rivals
like attacking from the sideway, then the probability of sideway defending states
will be increased. But a discussion of the learning algorithm is beyond the scope
of this paper and thus the following performance comparison does not include
results for it.

Experiment 1: We determined how our algorithm and BPI trade off between the
number of agents and runtime for the RoboCup Simulation 2D League with the
fixed threshold reward (0.8). Our results show that our algorithm is faster than
BPI when the number of agents is bigger than 3. For example, our algorithm
needed 458.2ms and BPI needed 799.5ms to compute a solution that is only
8 agents under consider (there are 11 agents for each team in the RoboCup
Simulation 2D League). Fig. 3 presents the performance comparison.

Experiment 2: We then determined how our algorithm and BPI trade off be-
tween runtime and the reward for the RoboCup Simulation 2D League when the
number of agents is fixed (7 agents). Our results show that our algorithm is still
faster than BPI with the same reward value, by fixing the number of agents. For
example, our algorithm needed 533.2ms and BPI needed 1111.9ms to compute
a solution that the reward is 0.9. Fig. 4 presents the performance comparison.4

3 The key parameter is the maximum number of children for each node, maxChildren,
which is related to the runtime and precision. In our experimental domain,
maxChildren = 3 is sufficient to produce the best solution.

4 All results are generated on a 2.2GHz/1GB machine using a C++ implementation.
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RoboCup-2006 has provided an ideal test bed for our algorithm which imple-
mented in our 2D simulation robot team. This team used the framework and
algorithm described in the previous section to improve its highlevel strategy.
The main motivation was to improve upon the coordination during defense.
Since many different factors contribute to the overall performance of the team,
it is difficult to measure the actual effect of the coordination with our new algo-
rithm clearly. However, using this approach, we won all the matches except one
ended in a draw 0-0 in the RoboCup-2006 in Bremen, German.
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Fig. 3. The result of Experiment 1
with 0.8 as the threshold reward and
the discount rate is γ = 0.9
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Fig. 4. The result of Experiment 2 with 7
agents and he discount rate is γ = 0.9

6 Conclusion and Future Work

The decision making in the RoboCup 2D Simulation League can be modeled
with DEC-POMDPs. Despite recent advances in solving DEC-POMDPs, state-
of-the art solution methods are still either inefficient [Bernstein et al., 2005] or
cannot provide guarantees on the quality of the resulting policy. In this paper,
we presented a solution method, that avoids both of these shortcomings. Our
experimental results show that the algorithm performs very well. The aim of
this paper was to provide a first experimental feasibility study to demonstrate
its potential. It is future work to study the theoretical properties of this method
in more depth (for example, analyze its complexity or extend its error analysis),
and extend it (for example, to handle more adversarial problems). The algorithm
and representations used in this work open up multiple research avenues for
developing effective approximation algorithms for the DEC-POMDP model in
the RoboCup domain.
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Abstract. This paper describes the design and implementation of robotic
agents for the RoboCup Simulation 2D category that learns using a re-
cently proposed Heuristic Reinforcement Learning algorithm, the Heuris-
tically Accelerated Q–Learning (HAQL). This algorithm allows the use of
heuristics to speed up the well-known Reinforcement Learning algorithm
Q–Learning. A heuristic function that influences the choice of the actions
characterizes the HAQL algorithm. A set of empirical evaluations was con-
ducted in the RoboCup 2D Simulator, and experimental results show that
even very simple heuristics enhances significantly the performance of the
agents.

Keywords: Reinforcement Learning, Cognitive Robotics, RoboCup Sim-
ulation 2D.

1 Introduction

Reinforcement Learning (RL) techniques have been attracting a great deal of
attention in the context of multiagent robotic systems. The reasons frequently
cited for such attractiveness are: the existence of strong theoretical guarantees
on convergence [9], they are easy to use, and they provide model-free learning
of adequate control strategies. Besides that, they also have been successfully
applied to solve a wide variety of control and planning problems.

However, one of the main problems with RL algorithms is that they typically
suffer from very slow learning rates, requiring a huge number of iterations to
converge to a good solution. This problem becomes worse in tasks with high
dimensional or continuous state spaces and when the system is given sparse
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rewards. One of the reasons for the slow learning rates is that most RL algorithms
assumes that neither an analytical model nor a sampling model of the problem
is available a priori. However, in some cases, there is domain knowledge that
could be used to speed up the learning process.

As a way to add domain knowledge to help in the solution of the RL problem,
a recently proposed Heuristic Reinforcement Learning algorithm – the Heuris-
tically Accelerated Q–Learning (HAQL) [1] – uses a heuristic function that
influences the choice of the action to speed up the well-known RL algorithm
Q–Learning. This paper investigates the use of HAQL to speed up the learning
process of teams of mobile autonomous robotic agents acting in a concurrent
multiagent environment, the RoboCup 2D Simulator. It is organized as follows:
section 2 describes the Q–learning algorithm. Section 3 describes the HAQL and
its formalization using a heuristic function. Section 4 describes the robotic soc-
cer domain used in the experiments, presents the experiments performed, and
shows the results obtained. Finally, Section 5 summarizes some important points
learned from this research and outlines future work.

2 Reinforcement Learning and the Q–Learning Algorithm

Consider an autonomous agent interacting with its environment via perception
and action. On each interaction step the agent senses the current state s of the
environment, and chooses an action a to perform. The action a alters the state
s of the environment, and a scalar reinforcement signal r (a reward or penalty)
is provided to the agent to indicate the desirability of the resulting state.

The goal of the agent in a RL problem is to learn an action policy that
maximizes the expected long term sum of values of the reinforcement signal,
from any starting state. A policy π : S → A is some function that tells the agent
which actions should be chosen, under which circumstances [5]. This problem
can be formulated as a discrete time, finite state, finite action Markov Decision
Process (MDP). The learner’s environment can be modeled [6] by a 4-tuple
〈S,A, T ,R〉, where:

– S: is a finite set of states.
– A: is a finite set of actions that the agent can perform.
– T : S×A → Π(S): is a state transition function, where Π(S) is a probability

distribution over S. T (s, a, s′) represents the probability of moving from state
s to s′ by performing action a.

– R : S × A → �: is a scalar reward function.

The task of a RL agent is to learn an optimal policy π∗ : S → A that maps
the current state s into an optimal action(s) a to be performed in s. In RL, the
policy π should be learned through trial-and-error interactions of the agent with
its environment, that is, the RL learner must explicitly explore its environment.

The Q–learning algorithm was proposed by Watkins [10] as a strategy to learn
an optimal policy π∗ when the model (T and R) is not known in advance. Let
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Q∗(s, a) be the reward received upon performing action a in state s, plus the
discounted value of following the optimal policy thereafter:

Q∗(s, a) ≡ R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ∗(s′). (1)

The optimal policy π∗ is π∗ ≡ argmaxa Q∗(s, a). Rewriting Q∗(s, a) in a recur-
sive form:

Q∗(s, a) ≡ R(s, a) + γ
∑
s′∈S

T (s, a, s′)max
a′

Q∗(s′, a′). (2)

Let Q̂ be the learner’s estimate of Q∗(s, a). The Q–learning algorithm itera-
tively approximates Q̂, i.e., the Q̂ values will converge with probability 1 to Q∗,
provided the system can be modeled as a MDP, the reward function is bounded
(∃c ∈ R; (∀s, a), |R(s, a)| < c), and actions are chosen so that every state-action
pair is visited an infinite number of times. The Q learning update rule is:

Q̂(s, a) ← Q̂(s, a) + α
[
r + γ max

a′
Q̂(s′, a′) − Q̂(s, a)

]
, (3)

where s is the current state; a is the action performed in s; r is the reward
received; s′ is the new state; γ is the discount factor (0 ≤ γ < 1); α is the
learning rate.

An interesting property of Q–learning is that, although the exploration-
exploitation tradeoff must be addressed, the Q̂ values will converge to Q∗, inde-
pendently of the exploration strategy employed (provided all state-action pairs
are visited often enough) [6].

3 The Heuristically Accelerated Q–Learning Algorithm

The Heuristically Accelerated Q–Learning algorithm [1] was proposed as a way of
solving the RL problem which makes explicit use of a heuristic function H : S ×
A → � to influence the choice of actions during the learning process. Ht(st, at)
defines the heuristic, which indicates the importance of performing the action at

when in state st.
The heuristic function is strongly associated with the policy: every heuristic

indicates that an action must be taken regardless of others. This way, it can be
said that the heuristic function defines a “Heuristic Policy”, that is, a tentative
policy used to accelerate the learning process. It appears in the context of this
paper as a way to use the knowledge about the policy of an agent to accelerate
the learning process. This knowledge can be derived directly from the domain
(prior knowledge) or from existing clues in the learning process itself.

The heuristic function is used only in the action choice rule, which defines
which action at must be executed when the agent is in state st. The action
choice rule used in the HAQL is a modification of the standard ε− Greedy rule
used in Q–learning, but with the heuristic function included:
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π(st) =

{
arg maxat

[
Q̂(st, at) + ξHt(st, at)

]
if q ≤ p,

arandom otherwise,
(4)

where:

– H : S ×A → �: is the heuristic function, which influences the action choice.
The subscript t indicates that it can be non-stationary.

– ξ: is a real variable used to weight the influence of the heuristic function.
– q is a random value with uniform probability in [0,1] and p (0 ≤ p ≤ 1) is the

parameter which defines the exploration/exploitation trade-off: the greater
the value of p, the smaller is the probability of a random choice.

– arandom is a random action selected among the possible actions in state st.

As a general rule, the value of the heuristic Ht(st, at) used in the HAQL must
be higher than the variation among the Q̂(st, at) for a similar st ∈ S, so it can
influence the choice of actions, and it must be as low as possible in order to
minimize the error. It can be defined as:

H(st, at) =

{
maxa Q̂(st, a) − Q̂(st, at) + η if at = πH(st),
0 otherwise.

(5)

where η is a small real value and πH(st) is the action suggested by the heuristic.
As the heuristic is used only in the choice of the action to be taken, the

proposed algorithm is different from the original Q–learning only in the way
exploration is carried out. The RL algorithm operation is not modified (i.e.,
updates of the function Q are as in Q–learning), this proposal allows that many
of the conclusions obtained for Q–learning to remain valid for HAQL [1].

The use of a heuristic function made by HAQL explores an important char-
acteristic of some RL algorithms: the free choice of training actions. The conse-
quence of this is that a suitable heuristic speeds up the learning process, and if
the heuristic is not suitable, the result is a delay which does not stop the system
from converging to a optimal value.

4 Experiment in the RoboCup 2D Simulation Domain

One experiment was carried out using the RoboCup 2D Soccer Server [7]: the im-
plementation of a defense team, with a goalkeeper and a first defender (fullback)
that have to learn how to minimize the number of goals scored by the opponent.
In this experiment, the implemented team have to learn while playing against a
team composed of two striker agents from the UvA Trilearn 2001 Team [2].

The space state of the learning agents is composed by its position in a discrete
grid with N x M positions the agent can occupy, the position of the ball in the
same grid and the direction the agent is facing. This grid is different for the
goalkeeper and the defender: each agent has a different area where it can move,
which they cannot leave. These grids, shown in figure 1, are partially overlapping,
allowing both agents to work together in some situations. The direction that the
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Fig. 1. Discrete grids that compose the space state of the goalkeeper (left) and the
defender (right)

agent can be facing is also discrete, and reduced to four: north, south, east
or west.

The defender can execute six actions: turnBodyToObject, that keeps the agent
at the same position, but always facing the ball; interceptBall, that moves the
agent in the direction of the ball; driveBallFoward, that allows the agent to move
with the ball; directPass, that execute a pass to the goalkeeper; kickBall, that
kick the ball away from the goal and; markOpponent, that moves the defender
close to one of the opponents.

The goalkeeper can also perform six actions: turnBodyToObject, intercept-
Ball, driveBallForward, kickBall, which are the same actions that the defender
can execute, and two specific actions: holdBall, that holds the ball and move-
ToDefensePosition, that moves the agent to a position between the ball and
the goal.

All these actions are implemented using pre-defined C++ methods defined in
the BasicPlayer class of the UvA Trilearn 2001 Team. “The BasicPlayer class
contains all the necessary information for performing the agents individual skills
such as intercepting the ball or kicking the ball to a desired position on the field”
[2, p. 50].

The reinforcement given to the agents were inspired on the definitions of
rewards presented in [3], and are different for the agents. For the goalkeeper, the
rewards consists of: ball caught, kicked or driven by goalie = 25; ball with any
opponent player = -25; goal scored by the opponent = -100. For the defender,
the rewards are: ball kicked or passed to the goalie = 15; ball with any opponent
player = -10; goal scored by the opponent = -15.

The heuristic policy used for the goalkeeper and the defender is described by
two rules: if the agent is not near the ball, run in the direction of the ball, and;
if the agent is close to the ball, do something with it. Note that the heuristic
policy is very simple, leaving the task of learning what to do with the ball and
how to deviate from the opponent to the learning process. The values associated
with the heuristic function are defined using equation 5, with the value of η set
to 200. This value is computed only once, at the beginning of the game. In all
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Fig. 2. Average goals scored against the defense agents using the Q–Learning and the
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Fig. 3. Results from Student’s t test between Q–learning and HAQL algorithms, for
defense agents training against two UvA Trilearn attack agents

the following episodes, the value of the heuristic is maintained fixed, allowing
the learning process to overcome bad indications.

In order to evaluate the performance of the HAQL algorithm, this experiment
was performed with teams of agents that learns using the Q–learning algorithm,
the HAQL algorithm and using agents that acts based only on a heuristic rule
(without learning capabilities). The results presented are based on the average of
10 training sessions for each algorithm. Each session is composed of 100 episodes
consisting of matches taking 3000 cycles each. During the simulation, when a
teams scores a goal all agents are transferred back to a pre-defined start position.

The parameters used in the experiments were the same for the two algorithms,
Q–learning and HAQL: the learning rate is α = 1.25, the exploration/ exploita-
tion rate p = 0.05 and the discount factor γ = 0.9. Values in the Q table were
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randomly initiated, with 0 ≤ Q(s, a, o) ≤ 1. The experiments were programmed
in C++ and executed in a Pentium IV 2.8GHz, with 1GB of RAM on a Linux
platform.

Figure 2 shows the learning curves for both algorithms when the agents learn
how to play against a team composed of two strikers from the UvA Trilearn
Team 2001 [2]. It presents the average goals scored by the opponent team in
each episode. It is possible to verify that Q–learning has worse performance
than HAQL at the initial learning phase, and that as the matches proceed, the
performance of both algorithms become more similar, as expected.

Another important information contained in this figure is the number of goals
scored against a defense team that uses only the heuristic policy to select which
action must be done, at a given time. As it can be seen, this team will receive
an average of 24 goals in each episode, performing worst than any of the other
two algorithms. This shows that the heuristic policy by itself is not a complete
solution to the problem, but only an indication of some actions that should be
taken, at certain times.

Student’s t–test [8] was used to verify the hypothesis that the use of heuristics
speeds up the learning process. For the experiments described in this section,
the value of the module of T was computed for each episode using the same
data presented in figure 2. The result, presented in figure 3, shows that HAQL
performs clearly better than Q–learning until the 60th episode, with a level of
confidence greater than 95%. After the 60th episode, the results became closer.
But it can be seen that HAQL still performs better than Q–learning.

Finally, table 1 shows the cumulative number of goals made by the strikers
at the end of 100 episodes (averaged for 10 training sessions). What stands out
in this tables is that, due to a lower number of goals scored against the HAQL
at the beginning of the learning process, this algorithm receives significanly less
goals than the Q–learning algoritm (with a statistical confidence > 99.9%).

Table 1. Cumulative goal the end of 100 episodes (average for all training sessions)

Algorithm Cumulative goal score

Q–leaning (1177 ± 51)
HAQL (836 ± 10)

5 Conclusion and Future Works

This paper presented the use of the Heuristically Accelerated Q–Learning (HAQL)
algorithm to speed up the learning process of teams of mobile autonomous robotic
agents acting in the RoboCup 2D Simulator.

The experimental results obtained in this domain showed that agents using
the HAQL algorithm learned faster than ones using the Q–learning, when they
were trained against the same opponent. These results are strong indications that
the performance of the learning algorithm can be improved using very simple
heuristic functions.
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Due to the fact that the reinforcement learning requires a large amount of
training episodes, the HAQL algorithm has been evaluated, so far, only in simu-
lated domains. Among the actions that need to be taken for a better evaluation
of this algorithm, the more important ones include:

– The development of teams composed of agents with more complex space
state representation and with a larger number of players.

– Working on obtaining results in more complex domains, such as RoboCup
3D Simulation and Small Size League robots [4].

– Comparing the use of more convenient heuristics in these domains.
– Validate the HAQL by applying it to other the domains, such as the “car on

the hill” and the “cart-pole”.
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Abstract. The ability by the simulated soccer player to make rational decisions 
about moving without ball is a critical factor of success.  Here we limit our scope 
to the offensive situation, i.e. when the ball is controlled by own team, and pro-
pose a systematic method for determining the optimal player position. Existing 
methods for accomplishing this task do not systematically balance risks and re-
wards, as they are not Pareto optimal by design. This may result in overlooking 
good opportunities. One more shortcoming of these methods is over simplifica-
tions in predicting the situation on the field, which may lead to performance loss. 
We propose two new ideas to address these issues. Experiments demonstrate that 
this results in a substantial increase in the team performance. 

1   Introduction 

The ability by the soccer player making rational decisions about where to move with-
out the ball is the critical factor of success both in a real-life and simulated game. 
With the total of 22 soccer players in two teams, an average player must be indeed 
purposefully moving to some place on the field more than 90 per cent of the time. 
Thus one should be expecting about 90 per cent impact on the whole game from any 
improvement in player positioning.  

In this paper, we propose the algorithm for determining a good position on the soc-
cer field for the artificial player when the ball is beyond its control.  We limit here the 
consideration to the offensive positioning, i.e. when the ball is possessed by own team. 
In the offensive situation, the major purpose of co-coordinated moving to some indi-
vidual positions on the field by the players without the ball is creating opportunities 
for receiving passes and scoring the opponent goal. Therefore, player positioning is 
not a standalone task; rather, it is part of a coordination mechanism. In this study, we 
deliberately isolate positioning from ball passing because in our recent paper we have 
proposed a Pareto-optimal method for ball passing [1]. Now we want the decisions 
about positioning to be optimized in the similar sense.  

During the last 10 years, RoboCup scholars have addressed the positioning prob-
lem in different ways [2-8].  In order to demonstrate the unique features of our ap-
proach, here we propose a generic two-level model that includes the existing methods 
for player positioning.  

The upper level determines so-called reference position for the player where it should 
be moving unless it is involved in intercepting or kicking the ball. Player coordination on 
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this level is addressed only implicitly. The lower level is responsible for fine tuning this 
reference position by transforming it into the target position. The decision-making rules 
and/or optimality criteria used in such methods are normally reflecting the algorithm 
designer’s vision of the soccer game. Alternatively, the decision making rules are derived 
by learning algorithms.   

The first ever comprehensive study of the player positioning problem was pre-
sumably made in [2]. In this method, the higher-level reference position can be re-
garded as a fixed point in the field assigned to each player with respect to its role in 
the team formation. The lower control level allowed the player to deviate from this 
default position within some area in order to move to the calculated target position 
with respect to current situation. Although this method implemented in CMUnited 
proved to be a good start, later on it was criticized in [3] for the limited flexibility on 
the upper control level. A method based on a set of logical rules proposed in [3] has 
addressed these shortcomings in the FCPortugal who outperformed CMUnited.  

The development that followed, did not demonstrate much improvement on the 
lower control level, though. The next very successful team, UvA Trilearn [4] that had 
outplayed FCPortugal in several competitions, implemented somewhat simpler player 
positioning method. In our classification, the early version of this method dated 2001-
2002 is completely located on the higher control layer.  In particular, this method does 
not take into account fine details such as the opportunity to receive a pass. This short-
coming was later addressed using so-called coordination graphs [5]. This lower-level 
model combines decision making about passing the ball and receiving the pass in an 
elegant way; implemented in UvA Trilearn, it helped to become the World RoboCup 
winner in 2003. However, we believe that this model could be further improved, as it 
was using heuristics rather than rigor multi-criteria optimization.   

One more group of the improvements to player positioning is a set of methods 
based on learning algorithms [6, 7, 8]. Like the coordination graph, some of these 
methods do not treat positioning as a standalone player skill, which makes theoretical 
comparisons difficult. More difficulties arise while trying to elicit meaningful deci-
sion making rules and especially address the convergence issue of learned rules to 
optimal decision making algorithms based on explicitly formulated decision criteria. 
Thus we are leaving methods based on learning beyond the scope of this study.  

The main objective of this paper is to provide an improved solution for low-level 
decision making about player positioning based on the known tactical principles of 
the real-life soccer [9, 10]. Because the recent studies addressed the lower control 
level rather superficially, it looks like our closest prototype is described in [2]. That 
was indeed the first method that was using both control levels. On the lower level, it 
maximizes the following utility function: 
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where  
P – the desired position for the player in anticipation of a pass;  
n – the number of agents on each team;  
Oi– the current position of each opponent,  i = 1,…, n;  
Tj – the current position of each teammate,  j = 1,…, (n-1);    
G – the position of the opponent goal;  
dist(A,C) – distance between positions A and C.  
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One advantage of this utility function is robustness; the two sums suppress the sen-
sor noise.  It repulses the player without ball from other players and encourages ad-
vancing to the opponent goal while seeking its best position. This indeed is reflecting 
the soccer tactics.  

We would also mention three shortcomings. First, from the tactical standpoint, cri-
terion (1) does not encourage players to deliberately get open for receiving a pass; this 
can only happen by chance. Second, the contribution of the remotely located players 
is exaggerated; increasing distance from the closest opponent by say 5 meters has 
same effect as increasing distance by 5 meters for the opponent located on the other 
end of the field.  Third, from the mathematical standpoint, the authors clearly indicate 
that this is a vector optimization problem; indeed, each addendum in (1) could stand 
for a criterion.  However, the reduction to single-criteria optimization is questionable.  
Aggregating several criteria in a linear combination is indeed theoretically acceptable 
if all criteria functions and constraints are convex [11].  However, the first two ad-
dendums in (1) are multi-modal functions of P; hence they are non-convex.  So this 
single-criterion optimization does not guarantee that all potentially acceptable player 
positions would be considered. This issue could be resolved by using the Pareto opti-
mality principle.  

Dynamics is one more difficulty with optimizing player position on low level. 
Reaching an optimal position takes some time, and the player must be persistent in 
doing so. In our experiments we have found that random factors in the simulated 
soccer tend to make the computation of the optimal target very unstable from cycle to 
cycle. In what follows, we discuss this issue.  

Therefore, the unique contribution of this paper is in that we (1) resolve the time 
horizon issue; (2) propose a new set of decision making criteria based on real-life 
soccer tactics; and (3) implement a Pareto-optimal solution to the optimization prob-
lem with these criteria.   

Section 2 addresses the time horizon issue. Section 3 explains how feasible alterna-
tive player positions could be generated. Section 4 introduces five optimality criteria 
and the algorithm for finding the Pareto-optimal solution. Section 5 provides experi-
mental results and conclusions.  

2   Predicting the Situation for Player Positioning  

The issue is what the planning time horizon should be once the player decides to go to 
some target position. A straightforward approach is just setting some fixed time hori-
zon τ, say 1 to 3 seconds, and trying to extrapolate the movements of the players and 
the ball for this time interval. However, our experiments have shown that this method 
does not work well. This is because of that, once the ball is kicked by some player, 
the rest players revise their previous intentions and change their directions of move-
ment. Neglecting these abrupt changes if the next ball kick occurs before the predic-
tion time expires would result in poor decisions. On the other hand, forecasting new 
movements by the players when the ball gets under close control is difficult. 

While trying to resolve this issue, it makes sense to see how human players are act-
ing in this situation [9, 10].  In the offensive positioning, the teammate with the ball 
may be in two different states: (a) chasing the freely rolling ball while staying the 
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fastest player to it or (b) keeping the ball close to itself while being able to pass it at 
any time.  In case (a) the human player without ball can easily predict the situation 
and estimate time remaining until the ball will be intercepted. So nothing abrupt will 
likely occur while the ball is rolling freely. Thus a human player predicts the situation 
and plans his actions accordingly until the ball is intercepted. This gives the idea of 
the time horizon that we should be using in our model. During this time the player 
without ball must concentrate on reaching good position before the teammate has 
gained close control of it. No communication is really necessary, and it does not make 
much sense substantially changing the originally optimized target position while the 
ball is rolling. Only minor corrections to it may be necessary as the world model is 
updated.  

In case (b), however, the situation is hard to predict, as the player with the ball can 
kick it at almost any time in a wide range of directions. In this case human players, if 
they have chance to become pass receivers, are watching carefully the teammate with 
the ball in order to be prepared to intercept the ball. The time horizon can be commu-
nicated by the active player to the partners; so communication is highly important in 
this situation.  With or without the communication, time horizon is very limited, any-
way.  So players in this case only can do short-time planning to adjust their positions; 
the major objective is implementing the team strategy by moving to what we call here 
the reference position determined by current situation. In many cases during the game 
player may be indeed too far away from this position; so the major concern is reach-
ing it as fast as stamina permits.   

Thus we come to the idea of the variable time horizon during that player behavior 
should be staying persistent. While the ball is rolling freely, its movement follows the 
laws of physics and is easily predictable. All players (if they are rational) are acting in 
the ways that are also rather easy to predict if their decision making model is known. 
Predicting teammate movements thus is possible with high precision, Figuring out the 
upper-level positioning algorithm of the opponent team is possible using opponent 
modeling implemented in the online coach. This problem could be simplified by con-
centrating only on the situations when the ball is rolling freely.   

Therefore, for these situations we are using the prediction horizon τ that is equal to 
the time remaining until the ball will be intercepted by a teammate. (If the fastest to 
the ball is the opponent player, the situation changes to defensive; this lies outside the 
scope of this study.) With this approach, once the ball has been kicked, the player 
estimates the interception point and time τ. This is the time remaining to plan its ac-
tions and move to the best possible position on the field before the ball will be kicked 
in the new direction. Because τ is known, the player selects only such optimal target 
position that could be indeed reached during this time. While the ball is rolling, the 
player is persistently moving to this position.  

The model for predicting the situation comprises three components: the ball, the 
friendly and the opponent player movements. The ball movement can be predicted 
with high precision, as the underlying physics is simple. The movements by team-
mates can be also predicted with precision, as their control algorithms and to some 
extent their perceived states of the world are available to the player in question. The 
fastest teammate to the ball will be intercepting it by moving with the maximal speed;  
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so its position can be predicted even more precisely. The rest teammates will be mov-
ing towards the best positions determined with yet another precisely known algorithm 
which could be used for predicting their positions. However, in our method we do not 
use such a sophisticated approach; in regards of each teammate without the ball, we 
assume that it is just moving with a constant velocity. This velocity is estimated by 
the player using own world model. Of the opponent players, the fastest one will be 
presumably also chasing the ball by following the trajectory that can be predicted 
fairly precisely. For the rest opponents possible options include assuming same posi-
tioning algorithm as for the teammates.  

If the ball is kickable by the teammate, we would suggest that τ should be set to a 
small constant value τmin which should be determined experimentally. So while the 
ball is closely controlled by the teammate, this would allow the player to continue 
adjusting its position within this limited time horizon.  

3   Identifying the Feasible Options  

Decision making is always a choice from a set of alternatives. In the discussed prob-
lem, the player first generates a set of feasible options and evaluates those using dif-
ferent criteria. Then the multi-criteria algorithm is applied to find the single best op-
tion by balancing the anticipated risks and rewards.  

Once the ball interception point and the remaining time τ have been determined by 
the player without ball, it generates a set of alternative positions in the vicinity of the 
reference position. Because the decision space (xy-plane) is continuous, it contains 
infinite number of such alternatives. With highly nonlinear and non-convex decision 
criteria, searching such space systematically would be hardly possible. Therefore, we 
use a discrete approximation, with the alternative positions forming on the xy-plane a 
grid about the default position. To reduce computations, we would like to keep the 
number of points in this grid minimal. The grid step determines the total number of 
the alternatives to be searched. The rule of thumb is setting the step equal to the radius 
of the player reach for kicking the ball. Increasing it might result in lost opportunities. 
Using a smaller step makes sense only if we have enough computational time to fur-
ther fine tune the balance of different optimality criteria (see more about it in the next 
section). 

Of these alternative positions, the player is only interested in those that could be 
reached in time τ. This allows eliminating part of the grid that is lying beyond the 
player reach. One more constraint that helps eliminating poor alternatives is the 
maximal distance from the reference position.  The alternatives lying outside the field 
or creating risk of offside are also eliminated.  

Figure 1 displays the field when the ball is kicked by red player #5. Arrows show 
the predicted positions of all objects at the moment when the ball is intercepted by red 
player #7. Highlighted are the alternative positions for red player #8. The area of 
responsibility is filled with small gray points; the reference position being the center 
of this area. The bigger blue points show the reachable positions of which this player 
must choose the best.  
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Fig. 1. The area of responsibility for red 
player #8 (gray dots) and reachable positions 
(blue dots) before the ball is intercepted by 
red #7 

Fig. 2. The Pareto set for red player #8 (bigger 
dots) and the optimal solution 

4   Criteria for Decision Making and the Optimization Algorithm  

Each feasible alternative position has its pros and cons that an intelligent player is 
taking into account while choosing the best option. These decision criteria should be 
reflecting the soccer tactics; in particular they should be measuring anticipated re-
wards and risks. We propose slightly different criteria sets for attackers, midfielders, 
and defenders because their tactical roles differ indeed [9, 10].  

For the attackers the criteria set is, as follows. 

1. All players must maintain the formation thus implementing the team strategy. So 
the distance between the point in the feasible set and the reference position should be 
minimized.  

2. All attackers must be open for a direct pass. Thus the angle between the direc-
tion to the ball interception point and the direction to the opponent located between 
the evaluated position and the interception point must be maximized.  

3. All players must maintain open space. This means that the distance from the 
evaluated point to the closest opponent should be maximized.  

4. The attackers must keep an open path to the opponent goal to create the scoring 
opportunity. So the distance from the line connecting the evaluated point and the goal 
center to the closest opponent (except the goalie) should be maximized. This criterion 
is only used in the vicinity of the opponent goal.  

5. The player must keep as close as possible to the opponent offside line to be able 
to penetrate the defence. So, the player should minimize the x-coordinate distance 
between the point in the feasible set and the offside line (yet not crossing this line).  
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Note that each criterion appears to have equal tactical importance; this observation 
will be used while discussing the optimization procedure below.  

Criteria for midfielders and defenders differ in that they do not contain criteria 4 
and 5 that encourage the opponent defense penetration. Instead, these players should 
be creating opportunities for launching the attack. This is achieved by minimizing the 
opponent player presence between the evaluated position and the direction to the 
opponent side of the field.  

These criteria are conflicting, as it is hardly possible to optimize all them simulta-
neously. This situation is well known in the literature on systems analysis and eco-
nomics; a special paradigm called the Pareto optimality principle allows to eliminate 
wittingly inappropriate so-called dominated alternatives [11]. These are the points that 
could be outperformed by at least some other point in the feasible set by at least one 
criterion. So only the non-dominated alternatives making so-called Pareto set should 
be searched for the ‘best’ balance of all criteria. Balancing requires additional infor-
mation about the relative importance of these criteria, or their weights. If the criteria 
functions and the feasible set are all convex, then the optimal point could be found by 
minimizing the weighed sum of the criteria (assuming that they all must be mini-
mized) [11]. However, because in our case the criteria functions may have several 
extremes, there is no hope for such a simple solution. 
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Fig. 3. The criteria space. Numbers at the points
in the Pareto set show the elimination order. 

  Fig. 4. A histogram of the score difference 
in 100 games 

 

The way out has been proposed in our recent work [1], where a method for search-
ing the balanced optimal point in the finite Pareto set was presented. This method is 
based on the sequential elimination of the poorest alternatives using just one criterion 
at a time. With N alternatives in the Pareto set, it requires N-1 steps. The criterion for 
the elimination on each step is selected randomly with the probability proportional to 
the weight of this criterion. Hence more important criteria are being applied more 
frequently. The sole remaining option after N-1 steps is the result of this optimization. 
This method works for any non-convex and even disconnected Pareto set.  Its compu-
tational complexity is O(N2).  
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In this application, we have further simplified the decision making procedure by 
assuming that all criteria have equal importance. Thus instead of randomly selecting 
the criteria on each step of elimination, our procedure is looping through the criteria 
in the deterministic order.  

If the total number of the alternatives is too small, this would result in only near-
optimal decision. Better balancing of the conflicting criteria is possible with increased 
N. So we propose to estimate the available computational time in current simulation 
cycle and select larger N if time permits.  This optimization algorithm is scalable 
indeed. It is also robust, because even with small N the decisions returned by it are 
still fairly good.  

Although we actually have five optimality criteria, for the purpose of illustration 
we have aggregated them all in just two: the Risk, which is combination of criteria 2 
and 3, and Gain which aggregates criteria 1, 4, and 5. The signs of the individual 
criteria in these aggregates were chosen so that both Risk and -Gain must be  
minimized.  

Figures 2 and 3 illustrate the configuration of the Pareto set in the decision and cri-
teria space, respectively. Of the total of 21 points in the Pareto set 20 are eliminated 
as shown in Figure 3; the remaining point is the sought solution. Note that the Pareto 
frontier is non-convex.   

The optimal point is reachable and is located at less than the maximal distance of 
the reference position.  It is lying on the way towards the opponent goal and far away 
from the predicted positions of the two threatening opponents, yellow #10 and #6. 
This point is open for receiving the pass from the anticipated interception point. This 
is indeed a well-balanced solution to the positioning problem for the red player #8.  
With non-aggregated five criteria we can only expect even better decisions.  

5   Experimental Results and Conclusion 

We have conducted experiments with the purpose to estimate the sole contribution of 
the proposed method for the lower-level optimized player positioning compared with 
only strategic, higher-level positioning.  

Measuring the player performance using existing RoboCup teams is difficult be-
cause new features always require careful fine tuning with the existing ones. For this 
reason, we decided to compare two very basic simulated soccer teams. The only dif-
ference was that the experimental team had player positioning on two levels and the 
control team just on one level.  Players in both teams had rather good direct ball pass-
ing and goal scoring skills and no dribbling or holding the ball at all. Thus any player, 
once gaining the control of the ball, was forced to immediately pass it to some team-
mate. In this setting, the ball was rolling freely more than 95 per cent of the time, thus 
providing ideal conditions for evaluating the proposed method.  

To further isolate the effects of imperfect sensors, we decided to use Tao of Soccer, 
the simplified soccer simulator with complete information about the world; it is avail-
able as the open source project [12]. Using the RoboCup simulator would require 
prohibitively long running time to sort out the effects of improved player positioning 
among many ambiguous factors.  
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The higher-level player positioning was implemented similar to used in UvA Tri-
learn [4]; this method proved to be reasonably good indeed. Assuming that both goals 
are lying on x-coordinate axis, the coordinates of the reference position for i-th player 
are calculated as follows:  

xi = w*xhomei + (1-w)*xball + Δxi,  

yi = w*xhomei + (1-w)*yball,  (2) 

where w is the weight (0<w<1), (xhomei, yhomei) and (xball, yball) are the fixed home 
and the current ball positions respectively, Δxi is the fixed individual adjustment of x-
coordinate whose sign differs for the offensive and defensive situations and the player 
role. 

Because players in the control team were moving to the reference positions without 
any fine tuning, ball passing opportunities were occurring as a matter of chance.  In 
the experimental team, rather, players were creating these opportunities on purpose.  

The team performance was measured by the game score difference. Figure 4 shows 
the histogram based on 100 games each 10 minutes long. 

Only one game has ended in a tie; in all the rest 99 games the experimental team 
won. The mean and the standard deviation of the score difference are 5.20 and 2.14, 
respectively. By approximating with Gaussian distribution, we get 0.9925 probability 
of not loosing the game. The probability to have the score difference is greater than 1 
is 0.975 and greater than 2 is 0.933. This gives the idea of the potential contribution of 
the low-level position optimization. With the smaller proportion of the time when the 
ball is rolling freely, this contribution will decrease. So teams favoring ball passing 
would likely benefit from our method more than teams that prefer dribbling.   

The experimental results demonstrate that, by locally adjusting their positions us-
ing the proposed method, players substantially contribute to the simulated soccer team 
performance by scoring on the average about five extra goals than the opponent team 
that does not have this feature. This confirms that optimized player positioning in the 
simulated soccer is the critical factor of success. Although this method has been de-
veloped for simulated soccer, we did not rely much on the specifics of the simulation 
league. Therefore, we believe that the main ideas presented in this work could be 
reused with minor modifications in other RoboCup leagues.   
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Abstract. For an agent to behave appropriately in an uncertain en-
vironment, efficient representation of knowledge and reliable reasoning
mechanisms are at the core of design. This paper proposes a novel re-
gion based passing scheme for the robotic soccer. The scheme captures
qualitative knowledge of soccer in a natural and efficient way. We im-
plemented the rational passing decision based on region(RPDR) in our
RoboCup simulation 3D team. Experiments show that our method out-
performs the base line method, i.e. position searching approach.

1 Introduction

For an agent to behave appropriately in an uncertain environment, efficient rep-
resentation of knowledge and reliable reasoning mechanisms are at the core of
design. To date, researchers have proposed a top-down approach to model soccer
knowledge[1], which was the basic motivation of this paper.

An important decision for a soccer robot to make is which action performs
when it has control of the ball. For a given situation, the soccer robot may
pass, dribble, shoot or clear. The decision on how to perform a pass can be an
especially crucial one, since passing is the only cooperating action in a soccer
game. In fact, dribbling, shooting and clearing can be thought as passing the ball
to itself, to the goal, and to a safe area respectively. To properly devise a passing
decision, previous research focuses on the use of searching[3,4,9,11], learning[7]
and coordination[2] algorithms, but are not entirely satisfactory.

In this paper, we present passing decision theory based on regions in the soccer
field. We propose a particular passing decision algorithm, that sets passing to
regions instead of passing to position. This improves the passing quality given the
constraints of its passing skill. Experiments show that our method outperforms
position searching approach. The advantages of our method are: 1) it has a low
computational complexity; 2) it does not need precise information; 3) it balances
the success and reward of passing.

The paper is organized as follows. In section 2, we briefly describe the basic
concepts of passing problem in RoboCup and related work of passing decision.
The proposed algorithm is described in section 3. Section 4 discusses how the
functionality and efficiency of our algorithm is experimentally validate, followed
by conclusion and future work in section 5.

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 238–245, 2008.
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2 Ball Passing Decision in RoboCup

If the robot has already decided to pass the ball, two problems need to be
addressed: 1) passing decision; 2) passing skill. The latter is an intrinsic design
of a soccer robot. Using the kicking device, a passing instruction defines how
the robot kicks the ball from its current position to a given destination position
such that it shoots over a blocking player but is still suitable for receiving when
it reaches the destination. We represent a pass as Pass(p) where p stands for
the destination position. Before the passing is implemented, the passing decision
is essential.

2.1 Passing Decision

In soccer theory, good passing makes it difficult for the opponent’s team to
defend, and is essential for good tactics[5]. To achieve this, one will need to solve
a problem which will be referred to as the optimal passing decision problem
and can be stated as follows: find the position in the field where the outcome is
the highest when the ball is passed to this position in a given situation.

Unfortunately, the problem depends on many uncertain factors, making it im-
practical to solve. For example, the opponent’s movement is an essential factor,
but can never be exactly predicted. The presence of uncertainty changes radially
the way in which an agent makes decisions[12]. The right thing to do, the ratio-
nal passing decision, therefore, depends on both the likelihood of a successful
pass and the rewards of passing.

2.2 Related Works of Passing Decision

However, making a rational passing decision is not a straightforward task. The
principle difficulty arises from the fact that such a problem consists of many differ-
ent elements, which have to be operated together in an appropriate way. Previous
research focuses on the use of searching[3,4,9,11], learning[7] and coordination[2]
algorithms to address the different elements. Although these methods are useful,
the results are not entirely satisfactory. Reasons are as follows.

– The total number of possible passing positions is extremely large. There
is too much work to list the complete set of evaluation functions, and too
hard to use the numerous rules to produce result. For example, to compute
probabilities of passes it is necessary to do thousands of interception time
calculations[9].

– The performances of these methods are extremely dependent on the quality
of their evaluation functions. But some evaluation functions need precise
information, which is not possible in the RoboCup domain.

– It is not possible to design a single decision rule suitable for all situations,
since different variables can be dominant for different situations. For exam-
ple, a player making the same decisions while playing with teams of different
styles will result in a bad outcome.
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3 Rational Passing Decision Based on Region

The word “region” often appears in soccer theory books[5], such as forward region
and scoring region. A region is defined as a set of positions with the same
attribute. We simplify the passing decision problem by replacing the position
with a region, in which the positions’ outcome are all high. However, the passing
skill only accept the position as its argument as mentioned above. We define
passing the ball to a region as passing the ball to the centroid of the region.
Passing the ball to the centroid has the lowest probability of having the ball fall
out of the designated region. As a result, replacing position with the region is
more likely to overcome the influence of uncertainty and represent the situation
on the field well.

In the ball passing domain, regions can be further classified into different
categories with different attributes: tactical region, dominate region, passable
region, and falling region.

Tactical Region: The field is divided into different tactical regions, which in-
dicate different tactical rewards and strategy purposes. We can set the pri-
orities of tactical regions with tactical rewards according to soccer theory.
Additionally, the on-line coach can also change tactical rewards according to
the situation on the field. Tactical regions derived from [5] can be seen on
Figure 1.

Fig. 1. Tactics regions on the field. The field is divided into eleven regions. Three
sides: left(L), center(C), right(R); three rows: back(B), midfield(M), forward(F); and
special regions: scoring(S), danger(D).

Dominant Region: A dominant region is defined as a region such that the
player can arrive earlier than any other player[13]. The domain region of
player n can be defined as follows:

Rdn = {p | p ∈ R, T(n, p) < min
i∈N\n

(T(i, p))} (1)

where T(i, p) returns the shortest time for player i to move to position p, R
is the whole soccer field, N corresponds the set of every player’s number. If
the ball is in the player’s dominant region, he is able to reach the ball before
any other player can since he is fastest.
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Passable Region: The player with the ball is limited by only passing the ball
to the passable region. The reason for this is that the player can only kick the
ball with limited power and direction. Furthermore, the opponent defenders
may block part of the passing angle. The passing region is defined as follows:

Rp = {p | p ∈ R, |pb − p| < dmax, Φ(pb − p) ∈ Φp ∩ Φb} (2)

where pb is the position of ball, dmax is for maximum passing distance, Φ(p)
returns the direction of vector p, Φp stands for the directions the ball can be
kick to, and Φb stands for the directions which are blocked by other players.

Falling Region: Because of noise of the kick device and uncertainty of the ball
movement, the balls which are kicked in the same initial situation and the
same kick force may fall in different positions. In RoboCup Simulation 3D
Server [8], the virtual kick device has three kinds normally distributed noise:
horizontal angle error, latitudinal angle error and power error. The falling
region is defined as follows:

Rf = {p | | |pb−p|−|pb−pg| | < De(|pb−pg|), |Φ(pb−p)−Φ(pb−pg)| < φe)}
(3)

where pg is the position of destination, De(d) denotes the distance error
while passing distance is d, and φe stands for the direction error of passing.

The intersection of the falling region, dominate region and passable region
denotes the likelihood of a successful pass. Within these regions, we propose the
Rational Passing Decision based on Region as follows:
1. Figure out different regions;
2. Calculate the intersection of regions;
3. Select the destination region.

The pseudo code is given in Algorithm 1. We use a polygon as an approximate
alternative to a region since the polygon holds the same attribute within the
region. All required algorithms can be found in computational geometry books[6]
such as computing the intersection of polygons.

The region captures qualitative knowledge of passing in a natural and efficient
way. First, it has a low computational complexity. The time complexity of our
algorithm is only in reference to the number of players, because we use regions
instead of positions. Second, the regions are rarely influenced by the noise of
perception and passing to a region allows larger kicking errors than passing to
a position allowing the agent to reach rational decisions without precise infor-
mation given unexpected noise in perception and action. Lastly, the selected
region’s area indicates the likelihood of success and its location denotes the tac-
tical reward of passing. The large region with a high reward is favored thus it
balancing the success and reward of passing.

4 Experiments

In this section we report our empirical results. In the early stage, we applied
the RPDR to the keepaway[10] problem. Based on these experiments, we imple-
mented the RPDR in our RoboCup soccer simulation 3D team—SEU-3D.
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Algorithm 1. Pseudo-code of Rational Passing Decision based on Region
Define: A(R) return the area of region R
Define: C(R) return the centroid of region R
Define: n the passer number
Define: Rti the ith tactical region on the field
Define: rewardi the tactical value of ith tactical region on the field, it is set accord-
ing to tactics in soccer theory and situation on the field
Define: RT = {Rt1, . . . , Rt11} the set of tactical regions order by its tactical value
Rp ← the passable region of the passer
vm ← 0
Rm ← NULL
for all Rti in RT do

Rpi ← Rp ∩ Rtj

for all j such that 1 ≤ j ≤ 11 and j �= n do
Rdj ← the dominate region of the teammate j
Rpij ← Rpi ∩ Rdj

if Rpij �= NULL then
P pij ← C(Rpij )
Rfij ← the falling region when passing the ball to P pij

R ← Rfij ∩ Rpij

v ← A(R)/A(Rfij ) ∗ rewardj

if v > vm then
vm ← v
Rm ← R

end if
end if

end for
end for
return C(Rm)

4.1 Keepaway

Keepaway is a subproblem of soccer in which one team: the keepers, tries to
maintain possession of the ball within a limited region while the opposing team:
the takers, attempts to gain possession[10]. The advantage of keepaway is that
it is more suitable for comparing different methods directly than the full robot
soccer task. We have developed a customized monitor (See Figure 2), which can
set up keepaway scene in the RoboCup Soccer Simulation 3D Server [8].

In our experiment, the takers’ behavior is specified with a fixed policy: the
taker who fastest to the ball tries to clear the ball out while others run to fixed
positions. In order to compare different passing decision methods, keepers have
the same low-level skills and policy except the passing decision. Two different
passing decision making methods are tested in the keepaway task:

Position Searching Passing Decision: Given discreet positions in the keep-
away region as candidates, evaluate each position by the difference of minimal
distance to takers and minimal distance to other keepers. The position with
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Fig. 2. A snapshot of a 3 vs. 2 keepaway episode in a 10m × 10m region. The keepers
are red, takers are blue, and the ball is yellow.

the highest evaluation value is chosen. In our implementation, the sampling
interval is 1m in both coordinates and the fringe positions are eliminated to
avoid passing the ball out.

Rational Passing Decision based on Region: A simple version of RPDR,
there is only one tactical region in the keepaway task.

Table 1. The average costing time(in milliseconds) and keeping time(in seconds) with
their standard deviations for different passing decisions

Keepers
3 vs. 2 4 vs. 3

Costing Time Keeping Time Costing Time Keeping Time

PSPD 0.0926 14.6 ± 1.1 0.2426 25.0 ± 2.9

RPDR 0.0780 17.2 ± 1.0 0.1365 36.2 ± 2.8

The keepers with different passing decisions played on the following two dif-
ferent keepaway tasks: 3 vs. 2 run on a 10m × 10m field, and 4 vs. 3 run on
a 15m × 15m field. In each cycle, the agent makes passing decision 1000 times
and records the total costing time: therefore we can get an average cost time of
making a passing decision1. The results are summarized in Table 1. The results
show that our method outperforms the other method. First, the average costing
time of RPDR is less than PSPD, especially in a larger field. It is important to
note that there is only one evaluation function in our test. Therefore, the costing
time of PSPD with many evaluation functions is much longer than the time we
tested. Second, the keeping time of RPDR is longer than PSPD meaning the
players with RPDR played better.

1 The server is configured to allow agents thinking so long time.
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Table 2. Results and several statistics of all the games played by our team with
different passing decisions. The ‘Poss’ column denotes the percentage of the total time
during a match in which our team was in ball possession. The ‘Def’, ‘Mid’ and ‘Att’
respectively denote the percentage of the time in which the ball was located in our
defensive, middle and attacking region of the field. The ‘Pass’ column denotes the total
number of passing, and ’Suc.P’ means the percentage of successful passing.

Opponent
Passing
Decision

Score Poss Def Mid Att Pass Suc.P

FC Portgual 2006
PSPD 7 - 1 44% 42% 49% 9% 363 62%
RPDR 12 - 1 48% 21% 54% 25% 418 73%

Wright Eagle 2006
PSPD 0 - 0 53% 11% 70% 19% 474 63%
RPDR 11 - 0 55% 3% 64% 33% 528 70%

ZJU Base 2006
PSPD 2 - 0 51% 24% 50% 26% 380 65%
RPDR 14 - 0 54% 17% 50% 33% 437 74%

4.2 Overall Team Results

To obtain an indication of the performance of the passing decision, we held a trial
competition with our teams with different passing decisions on one side and the
top three teams at RoboCup-2006 on the other side. Our teams have the same
low-level skills and policy: the only exception being the passing decision. One of
our team uses RPDR while another uses the PSPD which is implemented as [3].

In this competition our two teams with different passing decisions played 10
games against each other team. The results are summarized in Table 2. Look at the
results of the trial competition, it is clear that the team with the RPDR is better
than the other one. First, the percentage of successful passes of RPDR is about
10% higher than the PSPD. Furthermore, the passing of RPDR is more aggressive
since the ball stayed on the opponent’s field longer. As a result, the RPDR team
achieved more goals. Additionally, the RPDR team performs well against every
team while the PSPD can not even win against a defensive team. This shows that
RPDR is flexible enough to balance the success and reward of passing.

5 Conclusion and Future Work

In this paper, we have described and investigated the use of the region model for
passing decision as qualitative soccer theory. As mentioned above, previous pass-
ing decision making methods are useful in RoboCup simulation teams, however,
their performances are not entirely satisfactory. The region captures qualitative
knowledge of passing in a natural and efficient way. After figuring out regions
on the field, RPDR then chooses the final passing regions based on known re-
gions and tactical purpose that can be found in soccer theory books. We have
provided empirical evidence to show: 1) it has a low computational complexity;
2) it allows the agent to arrive at rational decisions without precise information
even when there is unexpected noise in perception and action; 3) it balances the
success and reward of passing. As a result of the above reasons, we believe that
RPDR is a feasible approach for a passing decision in RoboCup.
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For future research, we plan on implementing an on-line tactics adjusting
mechanism based on the tactical regions, and applying the RPDR to the middle-
size robots of our university. We would like to extend the region to other decision
problems, such as dribbling and clearing. Furthermore, we wish to investigate
whether other qualitative soccer theory can be applied to RoboCup.
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Abstract. In this article we present an automatic on-line color calibration 
system that makes extensive use of the spatial relationships between color 
classes in the color space. First, we introduce the definition of class-relative 
color spaces, where classes are represented in terms of their spatial relation to a 
base color class. Then, using class-relative color spaces, the system is able to 
remap classes from the already trained ones, which gives a starting point for 
training the remaining classes. The color-calibrating system also uses a 
feedback from the detected objects using the remapped (or partially trained) 
classes. As a result, the system is able to generate a complete color look-up 
table from scratch, and to adapt quickly to severe lighting condition changes. A 
particularity of our system is that it does not need to solve the natural ambiguity 
in color classes’ intersections, but it is able to keep and use it during color 
segmentation using the concept of soft-colors. 

1   Introduction 

In the RoboCup Four Legged League, as in most of the RoboCup soccer leagues, 
objects are specifically colored to allow robots to recognize them easily. Most of the 
employed vision systems use color segmentation to take advantage of the color 
information. There several approaches for segmenting colors in real time [5], a common 
one is based in the use of a 3D look-up table (LUT). When the robot operates in a 
controlled environment having fixed lighting conditions, a fixed LUT performs well, 
and thus it can be trained off-line. However, this approach has two main flaws: a lot of 
time is needed for a human to calibrate the LUT, and the operation of the robot is 
strictly limited to artificial environments with highly controlled illumination. In this 
context, the development of automatic or adaptive color calibration systems has been 
intensely treated by the RoboCup community in the last years. The motivation is very 
clear: RoboCup is supposed to increasingly move to more realistic game conditions, 
which of course include natural lighting. 

The presented work proposes an automatic on-line color calibration system, which 
allows the robot to build a LUT on-line, and to adapt it quickly to severe lighting 
condition changes. To our knowledge, the paper is innovative in three aspects: (i) 
spatial relationships between color classes are used in a very general fashion, which 
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allows the system to be easily adapted to any other application with different objects 
and/or color classes, (ii) the intersections of the color classes (also called soft-colors 
in the literature) are also automatically trained and stored in the LUT, and (iii) non 
isotropic illumination is considered, and an automatic training procedure is proposed. 

2   Related Work 

A main stage in any automatic color calibration system is the extraction of pixels of 
colored objects to train the LUT or the classes’ statistics. To obtain these pixels, some 
of the published approaches relay on the knowledge of the objects’ shape and on the 
pose of the robot, and thus, on the relative positions of the fixed objects with respect 
to the robot [6][2]. Some other systems use scan lines and predefined transition rules 
based on simple spatial relations between color classes in the color space (for 
example: “cyan has a higher U component than green”) [1]. Other systems use a priori 
membership distribution to track the classes’ statistics by means of the EM algorithm 
[3]. Some of the proposed approaches make use of incremental layers or estimations 
of the color classes [1], where coarse layers are used to extract pixels that are used to 
train more precise layers. Regarding color information representation, there are 
several ways to represent color classes. The following are examples of proposed class 
representations, sorted by complexity and flexibility: cuboids [1], non-rotated 
ellipsoids (mean and uncorrelated variances of color components) [6], union of 
rotated ellipsoids (Gaussian Mixture) [3], and hybrids that bounds in different ways 
the different color coordinates [4]. Most of them do not allow intersection between 
classes so ambiguity must be solved before filling the LUT, attempting to minimize 
the expected classification error. Additionally, color constancy approaches (e.g. [8]) 
propose the existence of transformations or mappings, in a determined color space, 
that describe what happen to colors of an image when the lighting changes. If one 
applies such an approach literally to the color segmentation problem, one could 
preprocess each image, and get a transformed one that should be easily segmented 
with a previous LUT. But, this transformation should be applied to each pixel, which 
is a prohibitive task in real-time robotics. However, we are using the color space 
mapping idea to propose the remapping applied to color classes instead of pixels, 
which is a task that can be performed in real time. 

3   Proposed Approach 

The proposed automatic color calibration system starts its operation with the 
extraction of pixels corresponding to color classes that can be trained with a total lack 
of a priori knowledge. These color classes are green and white in our application (in 
the RoboCup soccer environment the field’s lines and carpet can be detected without 
using color information), but from a more general point of view, they can be colors of 
any objects that can be detected without use of color information. The extracted 
classes’ statistics are used in combination with a priori knowledge of the spatial 
relationships among the color classes to remap the rest of the classes. This remapped 
color classes are then used for the on-line detection of objects. Then, the system takes 
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feedback from the detected objects to extract pixels of the respective classes, and 
makes a smooth transition from the remapped estimations of the color classes to 
trained estimations of the classes. 

3.1   Basic Definitions: Colors, Color Classes and Color Classes Representation 

The system works in the YUV color space because the AIBO camera takes images in 
this format. A point in the YUV color space will be named a color. A color class is a 
set of colors that can be observed in pixels corresponding to an object or an object 
part having a given human-defined color. For example the class “yellow” is the one 
that contains pixels belonging to a yellow goal or a yellow part of a beacon. The set of 
color classes Ω  is defined by the application. As discussed in [6] (even when they 
chose a simpler representation), we have found that a correlated 3D Gaussian is 
enough to represent a color class. Thus, we have chosen to represent each class 

∈ΩK  by a mean and a covariance in the YUV space, ( ),K Kμ Σ . An innovation 

threshold λK  is used to determine when a color belongs to any class K : 

[ ] ( ) ( ){ }3 10,255
T λ−= ∈ − − <K K K KK c c μ Σ c μ  (1) 

Note that the size of a class is determined by its covariance matrix KΣ  and its 

innovation threshold λK . This class representation corresponds to an ellipsoid in the 

YUV space with possibly rotated axes and different radiuses. A value of 10λ =K  is 

found to be optimal when the class statistics are reasonably well estimated. 
When lighting conditions change, color classes change their position and size in 

the color space. This makes a fixed color’s LUT inapplicable in those situations. 
However, even when the lighting condition change drastically, and the color classes 
suffer severe modifications, some spatial relationships between them in the color 
space remain unaltered. Thus, given a color class K , we can define a K-relative color 
space as one centered in Kμ  and with a metric linearly transformed by a function of 

KΣ . Any color c  can be transformed to the K-relative color space: 

( )1−= Σ −K
K Kc c μ  (2) 

Where the square root of a matrix A is defined as a lower triangular matrix that 

satisfies: 
T

=A A A . The square root is implemented using the Cholesky 
factorization [9]. We call Kc  the K-relative representation of c . Analogously, given 

any color class D , with mean and covariance ( ),D Dμ Σ , it can have its K-relative 

representation defined as ( ),K K
D Dμ Σ , where, 

( )1−= Σ −K
D K D Kμ μ μ ; 1 1

T
− −Σ = Σ Σ ΣK

D K D K  (3) 

Note that in particular, ( ) ( ), 0,=K K
K Kμ Σ I , with I  the 3x3 identity matrix. 
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3.2   Off-Line Training 

In the proposed system color classes are trained manually using a procedure as the 

one described in [7]. The statistics ( ),K K
D Dμ Σ  are calculated and stored for every pair 

of classes ( ) 2, ∈ΩK D . This procedure is intended so that the system learns the 

spatial relationships between classes, and it is needed to be carried out it only once for 
a determined set of color classes. This is why we associate this procedure to the one 
when a human learns the colors for the first time. We have found that the system is 
robust enough to small changes in the actual colors of the objects (for example, the 
color of the carpet). 

3.3   On-Line Operation 

Our system maintains two estimations of the color classes, a remapped estimation and 
trained estimation (see explanation in the next sections). These two estimations are 
combined to obtain the resulting estimation that is used to fill a LUT. This resulting 
LUT is the output of the system. Fig. 1 shows the system’s components and the 
information flow. In the next sections the different modules will be explained. 

 
Pixels Extraction and Statistics Calculation: In this stage, acquired images are used 
to extract pixels from detected objects. A fixed maximum number of pixels colors are 
stored for each color class. The number of stored colors is selected to ensure that 
enough images are considered (approximately 10 images, with a mean number of 
extracted pixels per image of ~200 green pixels and ~40 for the rest of the classes). 
When necessary, oldest colors are rewritten by the newest ones. Green and white are 
extracted using scan lines. Scan lines are perpendicular to the horizon line and the 
scan is performed similarly as described in [1], but following upwards direction. For 
the sake of brevity, we will not describe in detail this procedure since it is not the 
focus of the paper. When using this procedure, it is not necessary to have a priori 
knowledge about the lighting conditions to extract green and white pixels because the 
visual sonar is based on Y channel transitions, thus we call green and white self-
sufficient classes. This is why the visual sonar is the starting point of the system. 
Yellow, cyan, pink, orange, red and blue (or other colors in the case of applications 
different than RoboCup soccer) are extracted from detected objects having the 
corresponding color class. Of course, to detect these objects it is necessary to have a 
previous estimation of those color classes, which is not possible when the system 
starts or when the lighting conditions change. That is why we call these classes 
dependent. 

Pixels selected to train a class are filtered (using (1), but considering a higher 
innovation threshold) according to their innovation with respect to the resulting 
estimation, to prevent outliers from damaging classes’ statistics. Trained classes’ 
statistics are recalculated after each image is processed using the stored colors. This 
recalculation is implemented in an efficient incremental fashion. 
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Fig. 1. Block diagram of the system. Trained and remapped color classes estimations are 
combined to get a resulting estimation which is used to fill the resulting LUT. The system is 
able to completely train and adapt the resulting LUT having prior knowledge of the spatial 
relationships between colors. 

Color Classes Remapping: As discussed in [8], a linear mapping is not enough to 
cope with the possible color space transformations that may appear when lighting 
changes, but, one could locally approximate such a mapping with a linear 
transformation. We present a statistic method for remapping the non-trained color 
classes. To overcome the lack of extracted pixels for the dependent classes, we make 
use of the class-relative color spaces to create a first approximation of them. If any 
class K is already trained, a remapped estimation of any other class D  can be 
obtained from its K-relative representation and the K  trained estimation: 

, , ,r t t= + ΣK K
D K K Dμ μ μ ; , , ,

T

r t tΣ = Σ Σ ΣK K
D K D K  (4) 

When there is more than one trained class, the system uses remapping weights β K
D  to 

determine how relatively important is the K-relative color space to remap the class D. 
Remapping weights are calculated as: 
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Where TK  is the maximum number of extracted pixels for the class K. Then, the 

remapped estimation of D is calculated as: 
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Every class is remapped in function of the existing trained colors. This remapped 
estimation is stored to be combined with the trained estimation, if it already exists. 
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Classes Estimations Combining: A linear combination of remapped and trained 
estimations is used to get the resulting color class estimation: 

( ), ,1t rα α= + −D D D D Dμ μ μ ; ( ), ,1t rα α= + −D D DΣ Σ Σ  (7) 

The use of αD  allows a smooth transition from the use of the remapped estimation of 

the class (when no pixel has yet been trained) to the use of the trained estimation 
(when the maximum number of pixels has already been trained). This smooth 
transition has the objective of avoiding mistakes in the association of training pixels 
to partially trained classes. 

 
LUT Filling: The LUT is filled when any of the classes’ resulting estimation moves 
enough, from the used to build the current LUT, to make it obsolete. The LUT filling 
is efficiently implemented: For each pair ( ),Y U , the two solutions 1V  and 2V  of the 

quadratic equation ( ) ( )1T λ−− − =K K K Kc μ Σ c μ  are calculated, with ( ), ,Y U V=c . If 

1 2,V V ∈ , the LUT is filled in the ( ),Y U  row, from 1V  to 2V with class K . 

4   Results 

We have tested our autonomous calibration system in real AIBO image sequences, 
with both the robot and its camera moving and partially controlled lighting conditions. 
To illustrate how the system creates a new LUT from scratch, figure 2 shows 
important events in the color calibration process, and how the segmentation improves 
as new images are processed. The whole sequence corresponds to a half turn of the 
robot around itself (~2 sec). From testing the system in several image sequences as 
the shown in fig. 2, we have concluded that the system is able to completely train a 
LUT from scratch. 

We compare the performance of the proposed method with Adaptive Color 
Distribution Transformation (ACDT) [10]. Fig. 3 shows the evolution of the correctly 
classified pixel rate (CCPR) over an image sequence1. The CCPR corresponds to the 
rate of pixels correctly classified inside the regions of the image occupied by actual 
objects. As can be seen from the curves, the system performs very similar to ACDT 
(CCPR≈40%) when the off line stage was trained in a different environment (UChile 
Lab). When the offline stage is performed in the same environment, the performance 
of the system is noticeably superior (CCPR≈55%). 

Processing time is a very relevant issue in mobile robotics systems, and even more 
when having limited processing power. Thus, we limit the frequency in which each of 
the operations is executed. This limitation is flexible and it is possible to balance the 
reactivity of the system versus the demanded processing time. 

                                                           
1 The image sequence and its correspondent ground truth information was downloaded from 

http://www.dis.uniroma1.it/~spqr/cms/ 
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Fig. 2. Example pictures from a video sequence obtained while the robot is making calibration 
from scratch (above), and the correspondent segmented images using the LUT obtained up to 
that moment (bellow). Some relevant events are the first detections of: the blue goal (left), the 
ball (center), and the pink yellow beacon (right). 
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Fig. 3. Correctly Classified Pixel Rate evolution over a 394 image sequence for: Adaptive 
Color Distribution Transformation (ACDT), Class-Relative Color Spaces with an off-line stage 
in a different environment, with different illumination (CRCS1), and Class-Relative Color 
Spaces with an off-line stage in the same environment, with the same illumination (CRCS2) 

Table 1. Processing times for each stage of the system 

)

 

To convince the reader that the system is able to work on-line, table 1 shows the 
processing time consumed by each of the stages of the process and the frequency in 
which each of them is performed. The total time is presented with a frequency of 1Hz 
because the operations are not performed at the same time, so the presented total time is 
a mean over 1 second period. The presented processing times are measured in an AIBO 
CPU (64bit RISC, 576 MHz, Aperios). It is important to note that the system can be 
executed in real time over an AIBO CPU because, if necessary, some frequencies could 
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be further reduced without a noticeable impact on the performance of the system, 
assuming that the lighting conditions will not change too often. With no frequency 
limitations, the entire process takes approximately 35ms, which is not good enough to 
play soccer but allows the robot to get a good LUT as quick as possible. 

5   Conclusions 

We have presented a novel approach for automatic calibration of a color segmentation 
system. Although the system is applied for a specific RoboCup soccer league, the 
presented framework is general enough to be used in other soccer leagues, and in 
other applications having any reasonable set of color labels. As is shown in the results 
section, the system is able to work online and to completely train a LUT from scratch. 
However, there are several efficiency improvements that may be achieved as, for 
example, to perform the LUT filling only for the needed classes. Also, we are 
planning to make our software architecture disconnect the automatic color calibration 
when time demanding tasks, as pursuing the ball, are being performed. 

 

Acknowledgments. We would like to thank Luca Iocchi for kindly providing us the 
image sequence and the code for testing it with his method. 
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Abstract. In the colour coded environment of the RoboCup 4 Legged
League it is crucial to extract as much colour information as possible
from an image without error. To do this requires hours of manual YUV
pixel mapping and testing to ensure robustness under all possible light-
ing conditions. The YUV colour space is a very convenient standard for
transmission of video data, but for colour classification and segmentation
it suffers from being non-intuitive and sensitive to changes in lighting.
Alternatively, colour classification principles can be applied in an HSI
colour space; one of the convenient characteristics of the HSI colour space
is that the hue value, H, represents the colour wavelength information.
From this concept it is easier to separate and label colour regions in an
automated process as the theoretical hue and colour wavelength rela-
tionship is known. By fitting a Gaussian model using mixtures to HSI
histograms we can generate boundaries of colour classes in HSI colour
space.

1 Introduction

Colour classification is the first stage of image processing in many RoboCup soft-
ware systems. It is also the primary, or in many cases effectively the only, sensor
for the robot. For this reason the calibration of colour information requires very
careful attention. Currently manual colour calibration is still the most common
process used during competition for its reliability. Manual colour calibration pro-
cess involves hours of mapping image pixels to a colour key defined in a look
up table (LUT), a three dimensional array referenced by Y,U and V values. Au-
tomation of the colour calibration process would have significant impact on the
human involvement required during RoboCup set up. Many methods have been
used to automate the colour calibration process [1] [2] but often require a routine
to gain the additional information needed to make a colour decision. However,
by transforming the image from the YUV colour space to the HSI colour space
we can use hue information to separate and label regions of object colours in
colour space using Gaussian mixtures. This paper proposes a compromise be-
tween the common process of manual calibration and the uncertain performance

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 254–261, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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of full automation by defining colour classes as a set of tunable upper and lower
boundaries in the HSI colour space. The approach still allows for testing and
manual tuning whilst greatly reducing calibration time and increasing reliability
of the colour information.

Section 2 of this paper presents an overview of the vision system that the clas-
sification system is applied to. Section 3 presents the stages of the HSI calibration
system which involves the collection of HSI histograms and the application of
Gaussian mixtures to separate hue information for the generation of upper and
lower boundaries in HSI colour space. Example images of the calibration system
and results are outlined in Section 4 and future work involving multi dimensional
Gaussian mixtures is outlined in Section 5.

2 Background

2.1 Vision Processing

Objects of the RoboCup Soccer environment are colour coded so that they can be
uniquely identified by the region of colour space they occupy. In ideal situations,
i.e. bright lighting and good quality camera, the YUV values for each object
would remain constant and could therefore be directly mapped to a single hard
colour [3]. However in the 4LL where there are hardware limitations and varied
lighting of objects due to the dynamic environment, these regions of colour space
tend to overlap making regions of colour space non unique and the previously
defined YUV mapping becomes invalid [4]. A soft colour classification system
was implemented as a practical solution to classifying this overlapping colour
space, it classifies these regions as a ‘soft’ colour and delays the colour decision
making process until the entire image is processed.

The input image of the robot vision system used follows the process; colour
classification referencing a YUV LUT, blob formation, soft colour blob filtering
and size modification, and object recognition[5]. This section details the colour
classification system as it is an important aspect of the base vision system. The
rest of the paper is focused on the off line colour calibration process involved
with building the reference LUT.

2.2 Soft Colour Classification

In the 4LL we are concerned with identifying certain landmarks and objects
that are uniquely colour coded. These objects and landmarks and their colour
codes are; orange ball, yellow goal and beacons, sky blue goal and beacons, red
robot uniforms, navy blue robot uniforms, green field, white robots and field
lines. Additionally black occurs in images with robots, dark shadows and dark
backgrounds. Certain colours are close in any colour space (YUV, HSI, RGB,
etc) and hence more difficult to separate. For the purpose of the 4LL the pairs
of close colours are; red and orange, orange and yellow, and dark green and dark
blue. They are of concern as a shift in colour space due to a change in lighting
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causes an overlap of these classified regions for this reason the soft colours: red-
orange, yellow-orange and blue-green were introduced to classify any overlap.

A number of approaches have been made to deal with the problem of overlap-
ping colour space; from the implementation of multiple look up tables [6] to the
implementation of ‘maybe colours’ [7]. Our method defers colour decision mak-
ing when a colour value is shared between two objects. The overlapping shade is
classified as the corresponding soft colour (‘either’ colour) until all colour infor-
mation is processed. If a soft colour is suitably overlapping true colour informa-
tion then the soft colour is used for additional object information (see Figure 1).
The soft colour classification system has been implemented successfully for two
years [5] of competition using a manual calibration system; however the classifi-
cation principles can be applied to any calibration method.

Fig. 1. Application of soft colour classification. Each row shows: Input images (taken
at RoboCup 2006), colour classified image (using manually calibrated LUT), true and
soft colour blobs formed and objects recognised.

2.3 YUV and HSI Colour Space

The YUV colour space is represented by; intensity (Y) and the colour information
is given by chrominance values (U and V) which represent the blue-green corre-
lation and red-green correlation. The HSI colour space is represented by; hue (H)
a value that represents the predominant wavelength of colour, saturation (S) a
value for the amount of colour present and intensity (I) the darkness/brightness
of the colour. By transforming the YUV image to HSI we can use hue as a conve-
nient value for separating and labeling colour keys. Additionally the HSI colour
space is intuitive, this allows for three dimensional solid regions of HSI colour
space to be defined as a colour class.

3 Method

The method involves a number of stages, firstly images are selected, transformed
to HSI and frequency data calculated (Figure 2). The S and I data can be divided
into distinct regions for colours, black and white. The H data can be and the



An Application of Gaussian Mixtures 257

H frequency data is normalised for fitting Gaussian mixtures to separate colour
information. Fitting of Gaussians to hue allows for upper and lower boundaries
to be determined using standard deviations from the mean. Using soft colour
principles the soft colour is applied to the hue values that overlap on the his-
togram. The upper and lower boundaries of H, S and I components are then
used to fill in colour regions and convert from HSI regions to a YUV LUT to
create solid classification.

3.1 HSI Histograms

We wanted a system that would be robust in the varied conditions that occur
during a game; and also easily modifiable when a dramatic shift in colour space
occurs (due to a change in location). Thorough manual calibration relies on image
streams from hundreds to thousands of images long. From a stream of images
we take a selection and convert from YUV to HSI. To reduce noise the images
selected are of individual objects (colours) that fill the majority of the frame.
Taking histograms of H,S and I channels (Figure 2) of test images allows for the
colour space to be analysed. In the design process it was noticed that histograms
of the hue channel showed distinct colour separation about the theoretical hue
values of the object colours and a Gaussian mixture model could be applied to
the frequency data. It also made apparent the problem colours and the sections
of hue values that overlap.

Fig. 2. Normalised histograms of hue, saturation and intensity channels from selected
test images

3.2 Gaussian Mixtures

We present research into segmenting in HSI using Gaussian mixtures in one
dimension. Gaussian mixtures were chosen as opposed to other mixture models
(e.g. t, Gamma, generalised λ) for its ease of extension to higher dimensions. The
hue frequency data was chosen as the first dimension to apply the mixtures to
as it holds important colour information and requires the most attention when
segmenting. Future work involving the application of multidimensional Gaussian
mixtures is outlined in Section 5.

Research involving Gaussian mixtures in robot vision is extensive and has
included segmenting in YUV [8] and colour learning in HSI [9]. This paper
presents the application of Gaussian mixtures to ensure hue values are unique
to the object colour and to detect overlapping hue values. We are trying to find
unique hue values for red, orange, yellow, green and blue. Any overlapping hue
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values is classed as soft colour. This is different to other systems in that it is not
dependent on a hard boundary, only object colour uniqueness. This ensures the
integrity of the system and allows for a practical implementation.

Using the normalised hue frequency data we used an optimisation approach
to fitting a Gaussian mixture. The cost function of the optimisation was the sum
of the squares error between the normalised (i.e. probability density) histogram
and the Gaussian mixture density. These operations were performed in Matlab
using the optimisation function fmincon. Since the object colour codes and their
theoretical hue ranges are known we can define an initial values and constraints
for the Gaussian parameters including the upper and lower boundaries of the
hue means. The optimisation function outputs the parameter values; mean (h̄i),
standard deviation (Si) and probability (pi)for each colour present in the his-
togram. Using these we calculated hue ranges, h̄i ± kiSi, where ki was initially
interactively chosen on the basis of a histogram. Overlapping hue ranges were
classified as soft colours. Figure 3 shows the optimised Gaussian mixture applied
to the hue histogram data from Figure 2.

Fig. 3. Hue histogram and optimised Gaussian mixture to separate red, orange, yellow,
green and blue

3.3 HSI Regions

Creating solid regions in HSI colour space can be done by defining upper and
lower boundaries for H,S and I channels. The optimisation function of the Gaus-
sian mixture outputs the mean and standard deviation for the hue values. This
data is used to calculate bounday values. The number of standard deviations
used for hue separation depends on the difficulty of separation of colours. For
red, orange and yellow a value of one standard deviation from the mean is used
to generate the upper and lower boundaries, for upper-yellow, green and blue
hues are well separated standard deviations of two or three multiples are used.
Saturation and intensity boundaries are interpreted from histograms as colour,
black and white regions. The three dimensional region in HSI colour space can be
labeled based on hue. Unique hue regions are labeled as the object colour whereas
non unique hue values create the boundaries of soft colour regions. Black and
white can be defined by saturation and intensity; both have low saturation but
can be separated by their intensity values as they are located at either apex of
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the HSI cones. A larger region of intensity (brightness) values can be classified in
this method due to the reliability gained from the separation of hue values. This
is a step in illumination invariance [10] however a shift in colour temperature of
lighting requires recalibration of hue Gaussians.

4 Results

The developed system had several notable results;

– Calibration time was greatly reduced.
– The number of required images was greatly reduced.
– The HSI regions resulted in solid classified images.
– Colours were successfully separated.
– Classification was robust and could handle change in lighting conditions.

The system has a significant reduction in calibration time from hours (approx
2 hrs) to minutes (approx 20 min). Additionally the number of images required
(for this example) was reduced from 1554 random images to 10 selective images.

The effect of HSI colour region classification compared to manual classification
can be seen from Figure 4. By defining solid classified regions in HSI colour has
resulted in ‘solid’ classification of images. It can also be seen that colours were
successfully separated.

This is confirmed in Table 1. The table compares performance of classification
of different objects. Blob formation rate was used as a measure of successful
classification, object recognition rate is a measure of success of object recognition
and false positive rate is a measure of blobs incorrectly recognised as objects.
Comparing the data it can be seen that the success of classification is similar
between both methods of classification. Also, it can be seen that an increase in
object recognition rate leads to an increase in false positive rate. This is to be
expected as often a compromise must be made between object detection and
false positives.

It can be seen from Figure 4 that the system results in the successful sepa-
ration of red and orange hues. This is of major importance in game situations.

Fig. 4. (a) Separation of red and orange, manually calibrated LUT (first row) compared
to HSI LUT (second row). (b) Robustness under varied lighting conditions, manually
calibrated LUT (second column) compared to HSI LUT (third column).
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Table 1. Blob formation rate, object recognition rate and false positive rate for objects
with different classification methods

Object Classification Blob Formation Object Recognition False Positive
Method Rate (%) Rate(%) Rate(%)

Ball Manual 100 97.5 0.5

HSI 100 98.8 1.1

Yellow Goal Manual 99.6 97.1 0.0

HSI 98.0 97.4 0.0

Blue Goal Manual 100 98.0 0.0

HSI 100 98.4 0.0

However every system has limitations, defining regions as rectangular may not
be ideal and hence there is the need for extension to higher dimension Gaussian
mixtures.

5 Conclusion and Future Work

Firstly this paper presented a practical colour classification method for fully
separating colours, yet retaining complete colour information. Using this clas-
sification principle we have presented a solution to the hours of manual colour
calibration required during setup at RoboCup events. By transforming YUV
images to HSI, computing histograms of each channel and applying Gaussian
mixtures to separate colour information we can define an upper and lower set
of classification boundaries in HSI colour space. Then by transforming these
HSI classified regions to a YUV look up table allows for an efficient calibra-
tion process that requires no additional processing to the original system. The
developed solution resulted in increased reliability of object recognition due to
the solid classified regions. However the reduction in misses has lead to an in-
crease false positives. The system produced reliable results improved to that of a
manually calibrated LUT whilst greatly reducing the number of required images
and hence reduced image collection time, and greatly reducing the time involved
with manually calibrating a LUT.

This method has proved to be successful but not optimal. Colour segmentation
using Gaussian mixtures on hue alone is not sufficient in all cases. Our aim is
to extend the use of Gaussian mixtures to higher dimensions. The extension of
dimensions are to include saturation and intensity data and other statistically
significant variables into the model to improve spatio-temporal consistency (for
example edge information, IR distance sensor information, etc). To do this will
require an alternate measure of goodness of fit such as maximum likelihood.
Additionally we will investigate replacing the density based optimisation with
either an Expectation Maximisation (EM) estimation for Gaussian mixtures or
Bayesian mixture modelling.
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Abstract. This paper shows how multiagent systems can be modeled by a com-
bination of UML statecharts and hybrid automata. This allows formal system
specification on different levels of abstraction on the one hand, and expressing
real-time system behavior with continuous variables on the other hand. It is shown
how multi-robot systems can be modeled by hybrid and hierarchical state ma-
chines and how model checking techniques for hybrid automata can be applied.
An enhanced synchronization concept is introduced that allows synchronization
taking time and avoids state explosion to a certain extent.

1 Multiagent Systems

Specifying behaviors for (physical) multiagent systems and multi-robot systems is a so-
phisticated and demanding task. Due to the high complexity of the interactions among
agents and the dynamics of the environment the need for precise modeling arises. Since
the behavior of agents usually can be understood as driven by external events and in-
ternal states, an obvious way of modeling multiagent systems is by state transition dia-
grams. Hierarchical state transition diagrams like statecharts are particularly well suited
as they allow the specification of behaviors on different levels of abstraction [1].

One important aspect of physical agents and robots is that they interact with a (possi-
bly simulated) physical environment. Such interactions typically consist of continuous
actions (e.g. the movement of a robot) and perceptions like the power status of a battery.
Classical state transition diagrams are not well suited for modeling this kind of interac-
tions, as the transitions between states are discrete. However, continuous extensions to
these formalisms have been proposed, e.g. hybrid automata [2].

Especially for agents employed in safety critical environments, e.g. in rescue scenar-
ios, behavior specification has to be done very carefully in order to avoid side effects
that may have unwanted or even disastrous consequences. One approach to realizing the
required clarity of a specification is the use of formal design methods. Fortunately, many
state transition diagram dialects like hybrid automata are equipped with a formal seman-
tics that makes them accessible to formal validation of the modeled behavior. Thus it

� This research is supported by the grants Fu 263/8 and Sto 421/2 from the German research
foundation DFG within the special priority program 1125 on Cooperating Teams of Mobile
Robots in Dynamic Environments.
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becomes possible to (semi-)automatically prove desirable features and the absence of
unwanted properties in the specified behaviors, e.g. with model checking methods.

2 Hybrid Hierarchical State Machines
In this chapter, we present the combination of two concepts: hierarchical statecharts and
hybrid automata. As a running example, we use a scenario from the RoboCup rescue
simulation league, which is shortly described in the following subsection.

Rescue Scenario. In the RoboCup rescue simulation league [3], a large scale disaster
is simulated. The simulator models part of a city after an earthquake. Buildings may be
collapsed or on fire, and roads are partially or completely blocked. A team of hetero-
geneous agents consisting of police forces, ambulance teams, a fire brigade, and their
respective headquarters is deployed. The agents have two main tasks, namely finding
and rescuing buried civilians and extinguishing fires. An auxiliary task is clearing of
blocked roads, such that agents can move smoothly. As their abilities enable each type
of agent to solve only one kind of task (e.g. fire brigades cannot clear roads or rescue
civilians), the need for coordination and synchronization among agents is obvious.

listen
help

idle move2firemove2supply

refill

extinguish

FirebrigadeMain
FirebrigadeAgent

FirebrigadeRSS

i: true

civ > 0/
civ′ = civ−1

i: m2ftime≥ 0
f: ˙m2ftime = −1f: ˙m2stime = −1

i: m2stime ≥ 0

∧civ = 0
∧neededw = 0

wLevel = wlMax

i: wLevel ≤ wlMax
f: ˙wLevel = rFill

wLevel = wlMax∧ neededw > 0 /
m2ftime′ = tSupply

i: wLevel ≥ 0
f: ˙wLevel = −rExt

˙neededw = −rExt
wLevel = 0/m2stime′ = tSupply m2ftime = 0

m2stime = 0

reported

emergency

true /m2ftime′ = 3

wLevel = wlMax∧ neededw = 0

neededw = 0∧wLevel > 0

i: true true /civ′ = civ+1

Fig. 1. A simple fire brigade agent

Consider the following sim-
ple scenario. If a fire breaks out
somewhere, a fire brigade agent
is ordered by its headquarters
to extinguish the fire. The fire
brigade moves to the fire and be-
gins to put it out. If the agent
runs out of water it has to refill
its tank at a supply station and
return to the fire to fulfill its task.
Once the fire is extinguished, the
fire brigade agent is idle again.
An additional task the agent has
to execute is to report any in-
jured civilians it discovers. Part
of this scenario is modeled in
Fig. 1 with the help of a hierar-
chical hybrid automaton [4]. In addition to the fire brigade agent the model should
include a fire station, fire, and civilians as part of the environment; all this will be ex-
plained in the next section (cf. Fig. 2).

States are represented as rectangles with rounded corners and can be structured
hierarchically. The specification of the fire brigade is a simple hierarchical chart, con-
sisting of the main control structure (FirebrigadeMain) and a rescue sub-system (Fire-
brigadeRSS) which are supposed to run in parallel. The latter just records the detected
civilians, which are not modeled in Fig. 1 (for this, see the sub-state Civilians in Fig. 2).
FirebrigadeMain consists of five sub-states corresponding to movements (move2fire,
move2supply), extinguishing (extinguish), refilling the tank (refill), and an idle state
(idle). The agent can report the discovered civilians when it is in its idle state. Details
from this figure will be explained in the course of this section.
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FirebrigadeAgent

Fire

w = 0/w′ = 10

help

injured
w = 10

f: ẇ = −1
i: w ≥ 0

idle assignFB

i: true i: false

burn

emergency
reported

Civilians

Firestation

Firebrigade

Rescuescenario

burn

no fire

boom = 0 f: ˙boom = 1

boom = 3/neededw′ = 120
i: boom ≤ 3

burning

f: ˙boom = 0
i: neededw > 0

neededw = 0

f: ˙boom = 0
i: true

put out

Fig. 2. A simple scenario from the RoboCup rescue simula-
tion. The state FirebrigadeAgent corresponds to Fig. 1. The
icon ⊂⊃−⊂⊃ hints at the hidden sub states.

Obviously, even in this
simple case with few com-
ponents and a determinis-
tic environment it is difficult
to see if the agent behaves
correctly. Important questions
like “does the fire brigade
try to extinguish without wa-
ter?” or “will every discov-
ered civilian (and only those)
be reported eventually?” de-
pend on the interaction of
all components and cannot be
answered without an analysis
of the whole system.

State Hierarchies and Transitions. Statecharts are a part of UML [5,6] and a well
accepted means to specify dynamic behavior of software systems. The main concept
for statecharts is a state, which corresponds to an activity or behavior of a robot agent.
Statecharts can be described in a rigorously formal manner [7,8], allowing flexible spec-
ification, implementation and analysis of multiagent systems [1] which is required for
robot behavior engineering and modeling and simulating complex robots.

Definition 1 (basic components). The basic components of a state machine are the
following disjoint sets:

S: a finite set of states, which is partitioned into three disjoint sets: Ssimple, Scomp,
and Sconc — called simple, composite and concurrent states, containing one des-
ignated start state s0 ∈ Scomp∪Sconc, and

X: a finite set of (real-numbered) variables.

In our running example, idle, extinguish or listen are simple states, and Firebri-
gadeAgent is a concurrent state and FirebrigadeMain and FirebrigadeRSS are com-
posite states, called regions in this case, which are separated by a dashed line. m2ftime
and wLevel are examples for real valued variables.

In statecharts, states are connected via transitions in T ⊆ S× S, indicating that an
agent in the first state will enter the second state. Transitions are drawn as arrows labeled
with jump conditions over the variables in X together with actions. For example, the
transition from idle to itself is labeled with civ > 0/civ′ = civ−1, with the meaning: if
the value of civ is greater 0, the action civ′ = civ−1 is executed while performing the
transition, i.e., the number of civilians that are found but not reported is decreased.

The label reported at the same transition is used for synchronizing the transition
with another automaton working in parallel, namely the one for Firestation (see Fig. 2).
It is only legal for the combined system if both automata take the transition labeled
reported at the same time (see [2] for details). In principle, the explicit use of events
and actions as in UML statecharts is not needed, as both can be expressed with the help
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of variables. For example the occurrence of an external event can be represented by
changing the value of the corresponding variable from 0 to 1.

Since hybrid automata [2] are similar to statecharts, it makes sense to combine the
advantages of both models. Statecharts have the clear advantage of allowing hierar-
chical specification on several levels of abstraction, while hybrid automata enable the
introduction of continuous variables and flow conditions. This extension of statecharts
is done by the subsequent definition. Hybrid automata are widely used for the specifi-
cation of embedded systems. By reachability analyses, diagnosis tasks can be solved.
We will come back to this in Sect. 4.

Definition 2 (jump conditions, flows and invariants). In addition to the variables in
X, we introduce new variables ẋ (first derivatives during continuous change) and x′

(values at the conclusion of discrete change) for each x ∈ X, calling the corresponding
variable sets Ẋ and X ′, respectively. Then, each transition in T may be labeled by a
jump condition, that is a predicate whose free variables are from X∪X ′, which can be
split into activation condition and effect. In addition, each state s ∈ S is labeled with
a flow condition (f:), whose free variables are from X∪ Ẋ, and an invariant (i:), whose
free variables are from X. Flow conditions may be empty and hence omitted, if nothing
changes continously in the respective state.

In our example we use the dotted variable ˙wLevel to denote the change of the water level
in the state refill. A transition from this state to the state move2fire is performed, if the
water level reached the maximum (wLevel = wlMax) and water is needed (neededw >
0). During the transition the action m2ftime′ = tSupply is executed.

We will restrict our attention to linear conditions, i.e. linear equalities and inequali-
ties among either ordinary variables in X∪X ′ or their first derivatives Ẋ, because only
then an exact reachability analysis (needed for model checking) is feasible [2]. Follow-
ing the lines of [5,6], UML statecharts have a hierarchical structure which can easily
be represented as a tree of states. Here, regions with cardinality greater than one must
be treated as multiple composite states, which are distinguished by different indices.
The behavior of the overall state machine can be described by a sequence of state tree
configurations, called micro-steps. For this, the interested reader is referred to [7,9].

3 Synchronization and Cooperation

The overall performance of programmed multiagent systems heavily depends on how
cooperative agents behave. Cooperation and coordination of agents can be achieved by
synchronization. Hence, it is essential to implement synchronization effectively. Syn-
chronization means that several actions must start or happen at the same time. In the
rescue scenario (see Sect. 2), transition labels serve as triggers for synchronization in
the formalism of hybrid automata, e.g., if an injured civilian cries for help, then the
listening fire fighter hears this. However, if more complicated coordination and coop-
eration among agents has to be expressed, then this simple concept of synchronization
may not suffice. In the following, we will therefore introduce an enhanced concept of
synchronization (see [4]), which we motivate with an example from robotic soccer.
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An Example of Coordination in Robotic Soccer. Since (robotic) soccer is a team
sport, cooperation of agents is essential.
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Fig. 3. Robotic soccer example

At best, exactly one
player should go to the
ball, while the others
try to position them-
selves as good as pos-
sible. Fig. 3 shows the
statechart for two play-
ers trying a coordinated
behavior of going to the
ball. To realize this be-
havior, the positions of
two players (p1, p2),
the ball (bR), a (sta-
tionary) opponent (PO)
and the opponent goal
POG are modeled. Ad-
ditionally the local esti-
mates of the ball posi-
tion b, the player p and
its teammate pT are
given for each player.
Finally there is the
players’ measurement
error ME , the range
DHB, within which a
player has the ball,
and some scaling fac-
tors F01–F04. Con-
stant names start with
capital letters, variables
with lower case letters.

In this example, co-
ordination is really im-
portant. In contrast to simple synchronization mechanisms, coordination may take some
time. The time between deciding to go to the ball and actually reaching it will be almost
always greater than zero. Thus, we must be able to distinguish between the allocation
and the occupation of a resource (e.g. the ball) in our specification formalism. In ad-
dition, since coordination may take some time, we associate the new synchronization
method with states and not with transitions. All this is comprised in the concept of timed
synchronization introduced next.

Timed Synchronization. Usually the so-called synchrony hypothesis is adopted for
state machines, assuming that the system is infinitely faster than the environment and
thus the response to an external stimulus (event) is always generated in the same step
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that the stimulus is introduced. However in practice, synchronization and coordination
of actions cannot be done in zero time. In UML 1.5 [5], synchronization is present,
but assumed to take zero time. In UML 2.0 [6] there does not seem to be a special
synchronization mechanism available any longer except by join and fork transitions.
Hence, it seems to be really worthwhile considering synchronization and coordination
in more detail. For this, we will introduce synchronization points which are associ-
ated with states, i.e. activities that last a certain time, and not with transitions (as in
UML 1.5), because the transition from one state to another takes zero time according to
the synchrony hypothesis.

Definition 3 (synchronization points). A synchronization point (represented as oval)
allows the coordinated treatment of common resources. It can be identified by special
synchronization variables x ∈ Xsynch ⊆ X with a given maximal capacity C(x) > 0.
Each such point may be connected with several states. We distinguish two relations:
R+ ⊆ S × Xsynch and R− ⊆ Xsynch × S, both represented by dashed arrows in the
respective direction. Further, each connection in R+ ∪R− is annotated with a number
m with 0 < m ≤C(x).

As just said, according to the previous definition, synchronization is connected to states
and not to transitions as in UML 1.5. In consequence, it is now possible that synchro-
nization may take some time as desired. The process of synchronization starts when a
state s connected to a synchronization variable x is entered, and it ends only after some
time when s is exited. Therefore, we distinguish the allocation of (added or subtracted)
resources and their (later) actual occupation.

In Fig. 3, coordination is achieved by the synchronization variable ball introduced
in the concurrent state teamplay. It has capacity 1, as there is only one ball in a soc-
cer game. The gotoBall state is positively connected to it, while the states kickToGoal,
kickToTeammate, and lostBall are negatively connected to it. This means, that the ball
resource is allocated during the gotoBall activity and deallocated after a kick. The tran-
sition marked with a crossed box indicates a failed synchronization.

4 Model Checking

As we already mentioned, hybrid automata are equipped with a formal semantics, which
makes it possible to apply formal methods in order to prove certain properties of the
specified systems, e.g. by model checking. However, in the context of hybrid automata
the term model checking usually refers to reachability testing, i.e. the question whether
some (unwanted) state is reachable from the initial configuration of the specified sys-
tem. To this end, all states that can be reached by a discrete transition or evolving the
continuous variables according to a flow condition are repeatedly added to the current
configuration until a fixpoint R is reached. Then it can be tested, if unwanted states are
reachable simply by intersecting the sets of reachable and unwanted states.

For the behavior specification shown in Figs. 1 and 2 we conducted several experi-
ments with the standard model checkers HYTECH [10]. Both model checkers are im-
plemented for the analysis of linear hybrid automata. They take textual representations
of hybrid automata like the one in Fig. 4 as input and perform reachability tests on the
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state space of the resulting product automaton. This is usually done by first computing
all states reachable from the initial configuration, and then checking the resulting set
for the needed properties. In the remainder of this section, we present some exemplary
model checking tasks for the rescue scenario.

Is it possible to extinguish the fire? When the state of the automaton modeling the
fire changes from no fire to burning, the variable neededw stores the amount of water
needed for putting out the fire (neededw = 120 in the beginning). When the fire is
put out, i.e. neededw = 0, the automaton enters the state put out. Thus the fire can be
extinguished, iff there is a reachable configuration cout where fire is in the state put
out. It is easy to see from the specification, that this is indeed the case, as neededw is
only decreased after the initial setting, and so the transition from burning to put out is
eventually forced. With the help of HYTECH’s trace generation ability it is quite easy
to solve the additional task of comparing different strategies, e.g. for refilling the water
tanks. To this end, traces to cout generated using the different strategies are compared. A
shorter trace (wrt. time units) corresponds to a faster solving of the extinguishing task.

Does the agent try to extinguish with an empty water tank? The fact that the firebri-
gade agent tries to put out the fire without water corresponds to the simple state extin-
guish being active while wLevel < 0. Note that we must not test for wLevel ≤ 0, as the
state extinguish is only left when the water level is zero, so including a check for equal-
ity leads to false results. Fig. 4 shows how to check this property with HYTECH. The
set of reachable states is collected in the variable init_reach (l. 8), and ext_error is
assigned the set of illegal states (l. 9), i.e., all states where extinguish is active and the
water level is below zero. Lines 10–12 finally show the actual test. If the intersection of
reachable and illegal states is not empty (l. 10), an error message is printed (l. 11).

1 automaton Civilian
2 synclabs: help;
3 initially injured & w = -10;
4 loc injured:
5 while w<=0 wait {}
6 when w=0 sync help do {w’ = -10} goto injured;
7 end

8 init_reach := reach forward from init endreach;
9 ext_error := loc[FirebrigadeMain] = extinguish & wLevel < 0;
10 if not empty(init_reach & ext_error)
11 then prints "Error: Tank empty!";
12 endif;

Fig. 4. HYTECH code for the civilian automaton from
Fig. 2 (ll. 1–7) and analysis commands

Does the agent report all discov-
ered civilians? This question con-
tains two properties to be checked:
(a) all discovered civilians are re-
ported eventually, and (b) the agent
does not report more civilians than
he found. The discovery of a civilian
is modeled by increasing the value
of the variable civ by one. For each
reported civilian one is subtracted
from civ. From this it follows, that
(b) holds, iff no configuration is reachable, where civ < 0. To show (a), one has to
ensure that from all configurations with civ > 0 a configuration with civ = 0 will be
reached eventually. Testing these properties with HYTECH reveals that (b) holds in the
specification, i.e. for all reachable states civ ≥ 0. However, the analysis also yields that
(a) does not hold. As we stated earlier the fire fighter agent should report civilans when
he is in the idle state. But as the invariant in this state (true) is never violated, the agent
is not forced to take the self transition labeled reported, which corresponds to reporting
a civilian. Thus, there is a legal run of the system, where no civilian is reported at all.

It should be remarked that synchronization points help us to reduce complexity. In or-
der to see this, let us consider a composite state with cardinality m containing k (simple)
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states. One of them, say s, is connected to a synchronization point with capacity C. Then
there are km different configurations, i.e. exponentially. Since at most C agents can be in
s, only ∑C

l=0

(m
l

)
(k−1)m−l configurations have to be considered. This is polynomial for

k = 2. A naı̈ve flattening of the example in Fig. 3 e.g. leads to 8 ·8 + 1 = 65 configura-
tions, whereas taking synchronization into account leads to only 2 ·2+2 ·2 ·6+1 = 29
configuration states. A translator that automatically converts hybrid hierarchical state-
charts into simple flat hybrid automata is currently implemented [11].

5 Conclusions

In this paper we demonstrated the use of hybrid hierarchical state machines for the
specification of multiagent systems. We presented two application scenarios from the
RoboCup, one from the rescue simulation and one from robotic soccer, and we demon-
strated that state-of-the-art model checkers for hybrid automata can be used for proving
properties of the specified systems. We exemplified this especially with an example
from the RoboCup rescue scenario. Model checking, i.e. reachability analysis helps us
finding out possible paths, which could help in the pre-computation of multiagent sys-
tem implementations. This point will be subject of future work as well as studies of
whether the procedure scales up to more complex scenarios.
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Abstract. Hardware simulation is a very efficient way for parameter tun-
ing. We developed a Simulink-based simulator for the navigation compo-
nents of our robotic soccer team. This physical simulation has interfaces
to be interconnected with the higher levels of the real control software and
is therefore able to perform an overall simulation of single robots.

1 Introduction

Development of new control strategies for the driving behavior of mobile robots
and extensive parameter studies on real hardware are time-consuming. To over-
come this, we developed a Simulink-based simulator for the driving behavior of
our soccer robots, where physical parameters of the robot and the environment
can be modeled and which allows for off-line parameter studies. This physical
simulation has network interfaces to be interconnected with the higher levels of
the real robot control software, so that critical movements can be detected and
the higher-level control can be adapted. Therefore, the system is able to perform
an overall simulation of single robots.

We use Matlab and Simulink to design an integrated environment for rapid
prototyping of algorithms, simulation, and modeling. Rapid prototyping is a
mean for the evaluation of different control strategies, e.g., P, PID, or Fuzzy. We
use the simulation environment to model the dynamic behavior of the robot and
the underlying hardware components. To analyze these models, we successfully
connected the physical simulator with the CoPS behavior control software, which
runs on real hardware.

With the simulator, we can also analyze and visualize the different signals,
e.g. motor currents and accelerations. This can be used to achieve good sets of
parameters for the higher-level behavior software. For example, in robotic soccer,
the driving behavior depends highly on the characteristics and conditions of the
carpet. In addition, the driving behavior changes while dribbling the ball. Typical
controllers like PID have several parameters, that affect the behavior. Finding
a good set in the higher-order parameter space is always a critical and time-
consuming procedure which can be accelerated using the simulation system.

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 270–277, 2008.
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The simulator is able to interpret messages in CAN-bus format, which is used
for the real hardware. In this way, the higher levels of the software don’t need
to be changed to switch between simulation and real hardware. The simulation
is interconnected to the robot software by TCP/IP communication.

2 Three-Wheeled Omnidirectional Drive

2.1 Robot Geometry Model

Fig. 1 shows the top view of our mobile robot model and the coordinate systems
we use in the model. The use of the following different coordinate systems make
the analysis of the model easier.

1. The World Coordinate System (WCS), attached to the field, is an inertial
Cartesian coordinate system with the unit vectors iw, jw,k.

2. The Local Coordinate System (LCS) is also a Cartesian coordinate system,
but its X axis is the heading of the robot (angle β in WCS). The unit vectors
are il, jl,k.

3. A Local Polar Coordinate Systems or LPCSi, i = 1, . . . , 3 attached to each
leg. The unit vectors are ei

r, e
i
θ,k.
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Fig. 1. Kinematics of the omnidirectional drive



272 H. Rajaie et al.

Fi
wheel

ei
θ

Ni
wheel

vi
wheel

k

Ri
wheel

ωi
wheel

Fig. 2. Wheel model

2.2 Wheel Model

In order to access a better estimation of the dynamic behavior of the robot, we
consider the effect of wheel slip. Fig. 2 shows the side view of a wheel. The view
direction points to the center of the robot.

We assume that there is always a vertical force applied from the ground to
each wheel, Ni

wheel as it is shown in Fig. 2. Ni
wheel is a result of the weight of

the robot and its value depends on the position of the center of gravity of the
robot and can be different for each wheel. We also assume that the horizontal
force applied form the ground to the wheel Fi

wheel is always in the plane of the
wheel, if it is not zero.

In case of a free rotation of the wheel i (no mechanical driving or breaking
torque on the wheel) we can assume:

vi
wheel = Ri

wheel × ωi
wheel (1)

which leads according to Fig. 2 to

Ri
wheel = Ri

wheelk, ωi
wheel = ωi

wheele
i
r, vi

wheel = vi
wheele

i
θ (2)

Considering that if ωi
wheel ·ei

r is positive then vi
wheel ·ei

θ is negative. In this case
the contact force between the wheel and the ground is zero.

Fi
wheel = 0 (3)

whereas in general
Fi

wheel = F i
wheele

i
θ (4)
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μ

μmax

slip

Fig. 3. Slip model

In cases where driving or breaking mechanical torques are applied on the wheel,
the above equation is no longer valid, which means that slip occurs. The wheel
slip velocity vi

s is defined as:

vi
s = vi

wheel + Ri
wheel × ωi

wheel (5)

In order to quantify the slip, the following formula is also used as a mathematical
definition.

si =
Ri

wheel × ωi
wheel + vi

wheel

‖v1
wheel‖

· ei
θ (6)

In the case of a nonzero mechanical torque on the wheel axis, as a consequence of
the slip, a contact force Fi

wheel between wheel and ground in the plane of wheel
occurs. A simplified and useful model which relates the slip and the generated
force is as follows:

Fi
wheel = μi‖Ni

wheel‖ei
θ (7)

in which Fi
wheel is the generated force and Ni

wheel is the vertical force which is
applied from the ground on the wheel i.

Ni
wheel = N i

wheelk (8)

In general, we assume that μi is a function of the slip velocity vi
s according to [3]:

μi = f(vi
s) (9)

Using equations 7 and 9 we conclude that

Fi
wheel = f(vi

s)‖Ni
wheel‖ei

θ (10)

Fig. 3 shows the model we use in this paper as a relation between the slip and
coefficient of friction, according to equation 9.
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2.3 Kinematic and Dynamic Model

Due to the Newton’s second law and according to Fig. 1 we get
3∑

i=1

F i
wheele

i
θ = mrobotarobot,

3∑
i=1

riei
r × F i

wheele
i
θ = Irobotαrobot (11)

The above two equations are written in the Local Coordinate System LCS.
Considering equation 10 we can write:

3∑
i=1

f(vi
s)‖Ni‖ei

θ = mrobotarobot,

3∑
i=1

riei
r×f(vi

s)‖Ni‖ei
θ = Irobotαrobot (12)

2.4 DC Motor Model

The model which we used for a DC motor is the standard model with ideal motor
and internal resistance. The rotation of the rotor of a DC motor generates an
electromotive force U i

emf . A linear algebraic equation relates the electromotive
force and the rotor angular velocity of motor i:

U i
emf = Ku‖ωi

motor‖ (13)

According to Ohm’s law the voltage drop due to the winding’s resistance is

U i
resistance = Ri

motorI
i (14)

By applying the Kirchoff’s law we get

U i
terminal − U i

emf = U i
resistance (15)

Putting equations 13 and 14 in equation 15 we conclude that for motor i

U i
terminal − Ku‖ωi

motor‖ = Ri
motorI

i (16)

Another very important relation in a DC motor is the linear relation between
the mechanical load, T i

motor and the electrical current Ii:

Ii = KiT
i
motor (17)

The equations 16 and 17 are used in our model to describe mathematically the
behavior of our DC motors.

2.5 Motor Controller Model

The basic task of a motor controller is to regulate the angular velocity of the motor
ωi(t) equal to a set angular velocity ωi

motorset. We define the velocity error as

errori(t) = ωi
motorset − ωi

motor(t) (18)

The motor controller receives the set angular velocity from another module over
the CAN bus and reads the current angular velocity from the digital encoders
and calculate the error. Depending on the control strategy, in our case PID, it
produces an output terminal voltage U i

terminal which is applied to the motor.

U i
terminal = f i

PID(errori) (19)
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3 Simulation Package

Based on the mathematical models introduced in part 2, we implemented the
Simulink model shown in Fig. 4. It consists of the following components:

The network block provides the set motor angular velocities ωi
motorset

.
As Simulink runs, the code in this block creates a listening socket and waits
for a request from the CoPS control software. For each velocity message from
the CoPS client, the network block updates the set motor angular velocities
ωi

motorset
. The velocity messages are based on the protocol which we use in our

team as the communication protocol between the higher levels of the CoPS soft-
ware and the motor controller hardware.

Each power transmission block models a DC motor plus the planetary
gearbox as well as the tooth belt and the motor controller based on equations 17
and 16. Each block gets the corresponding set angular velocity ωi

motorset
as input

from the network block and the contact force signal Fi
wheel(t) as a feedback from

the contact forces block and outputs the wheels’ angular velocities ωi
wheel(t).

The slip block gets the ωi
wheel(t) and vi

wheels(t) as inputs and calculates vi
s(t)

based on Eq. 5.
The friction coefficients block calculates the μi(t) from the vi

s based on
Eq. 9.

The contact forces block calculates Fi
wheel(t) based on Eq. 7. In this block

the nonuniform weight distribution of the robot can be modeled.
The newton block accepts the Fi

wheel(t) from the contact forces block as
inputs and calculates the robot velocity vi

robot(t)LCS in the local coordinate
system based on equations ?? and 11.

The field block receives the vi
robot(t)LCS from newton block and visualizes

the play field and the robot on it.

x

y

β
ωmot

network

clock

time

ω1
set

F 1

pow.trans.1

ω2
set

F 2

pow.trans.2

ω3
set

F 3

pow.trans.3

ω1

ω2

ω3

ω1

ω2

ω3

vwheels

slip

v1
s

v2
s

v3
s

v1
s

v2
s

v3
s

friction

coeff.

μ1

μ2

μ3

μ1

μ2

μ3
Fwh

contact

forces

k

vrobotLCS → vwheelsPCS

Fwh Vin

newton

Vrobot

x

y

β

field

Fig. 4. Simulink model for the 3-wheel motor control
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The clock provides a soft real time mechanism which synchronizes the model
simulation clock with the internal clock of the computer.

4 Experiments and Results

The result of the simulation for a robot with m = 17kg,I = 0.227kgm−2 is
shown in fig. 5. In the simulation we have assumed a non-uniform distribution
of weight load on the wheels:

‖N1
wheel‖ = 60.43N, ‖N2

wheel‖ = 50.63N, ‖N3
wheel‖ = 55.53N, (20)

Also it is assumed that μmax = 0.25, as shown in Fig. 3. The initial velocity
of the robot is zero, and the set velocity is

vrobotLCS = (2 m/s, 0 m/s, 0 rad/s) (21)
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Fig. 5. Simulation result for the robot during acceleration: (a) slip velocity for the
3 wheels [m/s], (b) horizontal forces for the 3 wheels [N ], (c) robot velocity in local
coordinate system [(m/s, m/s, rad/s)], (d) wheel velocities [rad/s]

As shown in the Fig. 5(a), at the beginning of the movement, the slip veloc-
ities of wheels 1 and 2 are high and their absolute values are not equal. The
unequal slip values are a direct consequence of the non-uniform weight distribu-
tion. Therefore the traction forces on wheels 1 and 2 are not equal and therefor
robot moves on a curve until the traction forces become equal. This force tran-
sition phase is shown in Fig. 5(b). As shown in Fig. 5(c),the the robot velocity
reaches the set velocity (2m/s, 0m/s, 0rad/s) after the transition phase.
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5 Conclusion and Outlook

We presented a dynamic model for a mobile robot equipped with omnidirectional
wheels, considering the wheel slip and a non-uniform distribution of weight.
The network interface allows us to connect our CoPS software with the model
through a the TCP/IP link. The CoPS software can communicate with the
model, e.g. send set velocity commands and query the model for signals like
velocities, positions and motor currents.

In this way, we can tune our control software for a better control over our
hardware, and also implement new control strategies rapidly in our model before
moving to the actual implementation in theCoPS control software.

In the near future, we want to extend the model in order to simulate not only
a single robot, but a team of robots. Additionally, we want also to simulate the
ball and other objects in the field, as well as components like the kicking device.
Future work will also include the possibility of learning these parameters using
other sensory data then odometry, e.g. the global self-localization.
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Abstract. Typical tasks of multi agent systems are effective coordi-
nation of single agents and their cooperation. Especially in dynamic
environments, like the RoboCup soccer domain, the uncertainty of an
opponent’s team behavior complicates coordinated team action. This
paper presents a novel approach for intuitive multi agent plan construc-
tion and adaptive plan selection to attempt these tasks. We introduce a
tool designed to represent plans like in tactical playbooks in human soc-
cer which allows easy plan construction, editing and managing. Further
we introduce a technique that provides adaptive plan selection in offen-
sive situations by evaluating effectiveness of plans and their actions with
statistically interpreted results to improve a team’s style of play. Using
experts as a concept for abstracting information about a team’s inter-
action with another, makes fast accommodated plan selection possible.
We briefly describe our software components, examine the performance
of our implementation and give an example for rational plan selection in
the RoboCup Small Size League.

1 Motivation and Related Work

A common hypothesis is, that the more a team’s behavior is adapted to the op-
ponent, the more effective it is. There are two major ways for adaption: One is
to analyse the opponent and adapt the own team behavior to it (e.g. [2,8]). The
other way, introduced in this work, is to analyse the own team effectiveness cor-
responding to the opponent and adapt team behavior thereby. The idea behind
our approach is to enhance the B-Smart software1, developed for the RoboCup
Small Size League, which uses more or less only reactive behavior selection, with
a deliberative component providing strategic moves and multi agent coordina-
tion. Deliberative principles become more and more one of the most challenging
aspects within the focal point of artificial intelligence in RoboCup (e.g. see team
descriptions to appear in [7]). This approach is restricted to offensive game situ-
ations and uses predefined stepwise action sequences, like tactical playbooks in
human soccer (cf. [9]), further called plans. The approach is based on the work
of Bowling et al. [3,4] who are using a play (multiagent plan)-based coordination
and opponent-adaption for the CMDragons Small Size Team. However, our ap-
proach differs in the way of plan/play construction and adaptive selection. Our
1 For further information see: http://www.b-smart.de/

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 278–285, 2008.
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implementation is divided into two parts. One separate component for creating
and managing plans, the Strategist, and one for plan selection, execution and
assessment, the Coach.

2 Plan Structure

Fig. 1. Elementary plan
structure

In this section we briefly describe the structure of a
plan. The highest level in our hierarchy is the planbase,
which is a container for multiple plans. The planbase
is used as a superior structure for classification and
to provide a possibility for a (topical) subsumption of
plans to improve clarity. Plans consist of variants and
plan steps. A single step is defined as a tuple of con-
ditions and actions. Conditions are restrictions which
must be satisfied to enter the corresponding plan step.
The variants are lists of conditions containing at least
one element to describe the entry condition for a spe-
cific plan, s. Fig. 1. In order to allow different entry
conditions for the same plan, different variants can be
specified. Unlike all other steps, the first step only has a list of actions without
any conditions, because these were already defined in the variant(s). These ac-
tions should be performed, if one of the variants matches with the actual game
situation. Single conditions and actions, in contrast, must all be fulfilled. After
the first plan step an arbitrary number of steps can follow. In our approach ac-
tions and conditions are predefined constructs. Conditions can be separated into
different classes. Assignment Conditions are restrictions, which can change the
world representation2. Dependent Conditions are restrictions, which are depen-
dent on Assignment Conditions in order to determine their validity. The third
class are Independent Conditions. In contrast to the other classes, they are in-
dependent to prior assignments and to the evaluation of other conditions. Also
other constructs are needed for a complete plan step, the actions ; they trigger
agents’ behaviors during plan execution. Typically a plan always ends with a
goalshot, because it is the main aim in offensive situations to score for your
team. Possibly it can be imagined that there also exists plans for gaining space
or other intentions.

3 Plan Construction

In this section the software component for constructing plans will be briefly
introduced, the Strategist. It is a stand-alone program designed for: Creation of
plans based on the already mentioned plan elements, editing plans and managing
plans and the associated planbases. One design principle for the Strategist is to
2 World representation means a representation of the “world”, which holds beside the

world model information about internally used assignments.
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Fig. 2. B-Smart Strategist

provide an easy and intuitive useable interface for these tasks. Therefore, it uses
an abstract visualization of the playing field and the plan elements, where these
elements can be added or removed simply by using the mouse. This approach
was inspired by, as it is common in some “real” sports, blackboard applications
for explaining tactical moves. An impression of the software layout is illustrated
in Fig. 2. Inspired by this, plans can be designed by human users and must
not be generated automatically, like in other approaches, e.g. systems using a
planner to generate possible strategies (e.g. [6]). We decided to use a qualitative
world model with grid rastering. That means, the playing field is divided into
equal rectangular fields, in our implementation 8 · 10 regions, where every field
is numbered consecutively, so that it is explicit. This abstraction level seems to
be a good trade-off between search complexity and accuracy. This concept of
world representation is inspired by Schiffler et al. [11].

4 Plan Selection and Execution

4.1 Identification of Applicable Plans

An important step towards the execution of a plan is the determination of the
subset of plans having a consistent variant regarding the current world model.
An effective way to find this subset is to refine the search space by the position
of the ball carrier. As previously described a wholly offensive plan execution has
been implemented. An important property that this assumption provides, is that
every variant has exactly one condition, specifying the ball carrier’s position.
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This feature is used for a fast refinement of the search space of plans. While
loading the planbase, variants will be checked by the position of the ball carrier
in the variants. This positional information is used as a key to address a list
of possibly applicable plans. Doing this, the set of plans will be reduced by the
plans with a ball carrier on an inconsistent position considering the current world
model. In other words, we define a subset of plans, the set of possibly applicable
plans with all plans containing a consistent position of the ball carrier to the
current world model that can be obtained by a simple lookup.

Plansapplicable ⊆ PlanspossiblyApplicable ⊆ Plans (1)

Fig. 3. Example for backtracking

As previously described, some con-
ditions depend on others. This
makes it impossible to prove the
consistency of a condition set in a
commutative way. However, within
one Condition Class, the consistency
check is commutative. Assignment
Conditions do not depend on any
other conditions, Dependent Condi-
tions only depend on Assignment
Conditions and Independent Condi-
tions do not depend on any other conditions either. To prove a set of conditions
of different condition classes correctly by consistency, methods to prove com-
mutative sets with constraints (like CSPs, s. [10, ch. 5]) are not appropriate. It
has to be ensured that all Assignment Conditions are proven before Dependent
Conditions. To do so, all condition sets are ordered while loading the planbase by
their condition class. The order of conditions allows the reduction of the branch-
ing factor for the consistency check to prove the condition set of satisfiability
from n! · dn to dn (cf. [10, ch. 5]), with n conditions and d possible assignments.
In order to prove a given set of conditions by consistency a modified backtrack-
ing algorithm is used to check the constraints between Dependent Conditions
and Assignment Conditions. This algorithm differs from regular backtracking
(cf. [10, ch. 5]) by using the given order of conditions to check consistency, as-
sign values and solve conflicts. For every possible assignment to a condition a
new node will be created and recursively checked until a consistent assignment
will be found or all paths have been visited. The need for backtracking to check
Assignment Conditions is exemplified in Fig. 3 with two players, player one on
position 1 and 2 and player two only on position 2 on the left side of the figure.
On the right side the resulting tree for the backtracking is illustrated. At first
position 1 will be assigned to player one, but this assignment leads to a conflict,
because no position could be assigned to player two. The conflict is solved by
assigning position 1 to player two and assigning position 2 to player one.

To reduce the set of possibly applicable plans to the set of applicable plans, all
variants of all possibly applicable plans are checked by the modified backtracking
algorithm of consistency. Only plans with at least one consistent variant are in
the set of applicable plans Plansapplicable.
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4.2 Plan Assessment

Since this approach only allows one plan to be executed at a time, one plan has
to be selected from the set of applicable plans. Assessing applicable plans is the
first step that permits a reasonable decision. In this approach the assessment
of applicable plans will be accomplished by experts. Experts are optional mod-
ules, which gather relevant information during plan execution to assess plans
or aspects of plans. Most experts are able to abstract from the gathered infor-
mation to evaluate similar plans. Four basic experts have been implemented,
the Dribble Expert, the Goalshot Expert, the Standard Expert and the Pass
Expert. Each expert evaluates one aspect of each plan3, except the Standard
Expert which evaluates the wholly plan without regarding one special aspect
of the plan additionally to the individual experts. Each expert holds a table
with the amount of successful executions and failures of plans or an aspect of
plans.

If an expert is called to assess a given plan, it has to return a probability
that contains the expert’s assumption about the observed actions in the plan
being successfully executed. In order to interpret a given set of samples statisti-
cally, experts need a function, which relates the given samples to a probability.
The Beta distribution provides useful properties to get these probabilities to
assess plans, like the mode and the probability density defined by two hyperpa-
rameters specifying the shape of the distribution (s. [10, ch. 19]). In this case
the two free variables/hyperparameters are specified by the number of successes
and the number of failures defining the shape of the distribution. With these
two variables the distribution is fully defined and we remember that these two
variables are gathered by the experts. For a low amount of samples the Beta
distribution mode could result in extreme probabilities like 0 or 1. This behavior
is not preferable, because it leads to excluding plans and avoids reinvestigating
plans that have been failed in the beginning. Therefore we define the Beta 2-2
distribution similar to the Beta distribution by adding a fair sample, 2 successes
and 2 failures. This avoids interpreting a low amount of samples inadequate
funded, but still converges with a higher amount of samples to the expected
value. Another feature is that the mode can be defined for unavailable a-priori
evidences easily by the amount of successes succ and the amount of failures fail
as modebeta22[succ,fail] = succ+1

succ+fail+2 (cf. [1]).
In order to provide an assessment of successful executions more or less decisive

than unsuccessful executions, the number of successes and failures can be factor-
ized (cf. [3]). This allows the configuration of more optimistic or more pessimistic
evaluations. The overall assessment for an expert of a given plan is defined by
the product of the single assessments of each action examined by the expert,
because each action is viewed as an independent event. The overall evaluation of
all experts is computed in the same way, by multiplying all experts’ evaluations,
giving the probability about all aspects of the plan will be successful.

3 E.g. the Dribble Expert evaluates dribbling actions.
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4.3 Plan Selection and Execution

In order to decide which plan should be executed if more than one plan is
applicable, the evaluation of each applicable plan will be normalized to 1. The
normalization gives a probability distribution for the plan selection (cf. [4]),
used to decide on a plan randomly, with a higher probability of choosing a
high assessed plan. With a lower probability, weaker plans will be executed,
which allows a reassessment of these plans. This is a helpful method to avoid
an opponent predicting the plan our system is selecting and to reassess the
effectiveness of our team’s plans in case of the opponent team is changing their
behavior or the bad luck the own team had during these plan’s executions.

After selecting a plan, it will be executed. Execution means to perform the
action sequences defined by the plan in the order of the steps. A transition from
one step to the following is accomplished, if all conditions of the following step
that are related to the ball carrier, are satisfied. If the following step contains
unsatisfied conditions, but the conditions related to the ball carrier are satisfied,
the plan execution will be aborted. This prevents the ball carrier from waiting
for other involved players to perform their actions completely and avoids imped-
ing the flow of the game. If a plan execution is aborted or a plan/step has been
completely performed, the experts will be notified and extract relevant informa-
tion. If a goal opportunity exists the plan will be stopped and the chance to
score will be used. The selection, adaption and (high-level) plan execution is im-
plemented as an optional module in the B-Smart Agent Software, called Coach.
The low-level execution of plans’ actions is realized by the Agent Software.

5 Preliminary Evaluation

In this section we consider performance measurements of plan selection and
examine a sequence of plan executions and their resulting assessments. First we

plans appl. plans required time
min max Ø min max Ø

10 1 1 1 0 ms 6 ms 1.2 ms
20 1 9 3.49 0 ms 19 ms 6.26 ms
100 1 22 4.3 1 ms 22 ms 9.52 ms

Fig. 4. Performance test for plan selection

start with the performance mea-
surements. Therefore, a series of
100 plan selections for each test
with up to 100 practical plans
have been performed on an AMD
Athlon XP 2000+ with 1666 MHz
and 1280 Mb RAM (s. Fig. 4).
Each test differs in the number
of loaded plans, listed in the first
column. The second column, appl.
plans, lists the amount of applicable plans found by one selection request. The
last column, required time, shows the time used for one plan selection phase.
Clearly the required time depends on more factors than the amount of plans
and the amount of applicable plans found, but the given criteria are of capital
importance. To examine an example of a sequence of plan executions with the
resulting assessments, we partly specify two plans by their executed actions in
Fig. 5 and the execution sequence with the resulting plan assessments in Fig. 6
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delivered by the Beta 2-2 mode. We assume that successes and failures are equally
factorized by 1. Further, we assume that the three specified plans have the same
variants, so they will be applicable at the same game situations.

First have a look at the a-priori assessments in column one in Fig. 6. It
can be seen that plan B will be executed at 67%, this seems to be rational by

plan step 1 step 2 step 3
A dribble pass goalshot
B pass goalshot

Fig. 5. Example plans

the assumption that short plans
have a higher success-rate than
longer plans. We assume that plan
B will be chosen and aborted in
the first step, while performing a
short pass. We notice that thereby
plan A gets a higher assessment,
but is assumed to be still less ef-
fective than plan B. This is explained by the aborted pass which exists in plan
A too. Now we assume that plan A is chosen and that this plan will be executed
successfully. Now we see that we cannot assume that a pass is more or less ef-
fective, because one time it was successful and the other time not. But we know
that plan B failed and plan A was successful, so it is rational that our concept
assumes a higher success probability for plan A than for plan B and will next
choose plan A by 58%. It can be noticed, that the more promising plans become
higher assessed at an accommodate speed and in a rational way. As we see, an
essential feature this approach provides is to assess plans appropriately even be-
fore they have been executed the first time by using abstracted evaluations from
experts, in our example plan A gets an higher assessment even before plan A
have been tried the first time.

execution plan evlpass evldribble evlgoalshot evlstandard evlall norm

a-priori values A 0.5 0.5 0.5 0.5 0.06 0.33
B 0.5 1 0.5 0.5 0.063 0.67

plan B failed A 0.33 0.5 0.5 0.5 0.04 0.43
while passing B 0.33 1 0.5 0.33 0.05 0.57

plan A was A 0.5 0.67 0.67 0.67 0.15 0.58
successful B 0.5 1 0.67 0.33 0.11 0.42

Fig. 6. Sequence of plan executions with assessments

6 Conclusions and Future Work

As shown in the evaluation, we implemented a fast and rational approach for
adaptive plan selection for offensive soccer situations. Plans and actions are
rated by their successes what indirectly models weakness of opponents’ play and
strengths of the own team abilities. This model is used to adapt the own team’s
play and allows to exploit the opponent’s flaw. The fast adaption further allows
to be prepared for unknown opponents. The intuitive plan construction software
allows easy plan creation and provides useful managing features. All in all the
whole system is a useful extension of the B-Smart team software and extends the
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current system by a deliberative concept. However, this system is not limited to
the Small Size League and could be integrated in other leagues as well.

For future work more properties of the beta distribution can be used, e.g.
information about the certainty of the experts’ assessments could be useful for
selecting plans. Another rational feature would be to evaluate positions on the
field depending on the current situation, e.g. this could be done by using potential
fields like Vail and Veloso [12] did, or by Voronoi diagrams used by Dylla et al.
[5]. Currently, each player tries to reach the middle of the target region defined
in the actions, without considering the current game situation. Potential fields
or Voronoi diagrams could help to choose a proper target for these actions.
We introduced the concept of experts assessing plans and their actions. This
is currently done in a rudimentary way and needs to be improved. Another
useful feature could be to use previously recorded assessments by the experts
to support the user while creating plans in the Strategist by estimating the
success-probability of the edited plans and actions.
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Abstract. In this paper we study different coordination strategies for
a group of robots involved in a search and rescue task. The system in-
tegrates all the necessary components to realise the basic behaviours of
robotic platforms. Coordination is based on iterative dynamic task assign-
ment. Tasks are interesting points to reach, and the coordination algo-
rithm finds at each time step the optimal assignment of robots to tasks. We
realised both a completely autonomous exploration strategy and a strat-
egy that involves a human operator. The human operator is able to control
the robots at different levels: giving priority points for exploration to the
team of robots, giving navigation goal points to team of robots, and di-
rectly tele-operating a single robot. For building a consistent global map,
we implemented a centralised coordinated SLAM approach that integrates
readings from all robots. The system has been tested both in the UsarSim
simulation environment and on robotic platforms.

1 Introduction

The use of mobile robotic platforms for search and rescue missions is envisioned
as a critical issue for society. Mobile robotic platforms can consistently help
human operator in dangerous or complex tasks, providing important information
for areas that cannot be directly reached.

To consistently help the human operator during rescue missions, robotic
platforms should exhibit a certain level of autonomy in their behaviours. break
Semi-autonomous robots can process acquired data and build a high-level rep-
resentation of the surrounding environment. Moreover, robots can act in the
environment (e.g. navigate) with only a limited interaction with the human op-
erator. In this way, the human operator can easily control multiple robots pro-
viding high level commands (e.g. “explore this area”, “reach this point”, etc.).
Moreover, in case of temporary network breakdown, the mobile bases can con-
tinue the execution of the ongoing task and return to a predefined base position.

In this paper we focus our attention on coordinated autonomous exploration
by a team of mobile robots in an unstructured environment. A team of coor-
dinated mobile robots can explore an environment faster than a single robot,
moreover, using several robots the system can be robust to platform failures.
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c© Springer-Verlag Berlin Heidelberg 2008



Semi-autonomous Coordinated Exploration in Rescue Scenarios 287

Autonomous exploration has been deeply investigated in mobile robot litera-
ture [1,2]. The main problem of autonomous exploration is to choose a sequence
of targets reachable by a robot, so to explore all the environment optimising
an objective function. As for multi-robot exploration, the main problem is to
coordinate the robot activities so to avoid conflicts in the exploration process.
In particular, the goal is to spread the robots in the environment collecting all
available information [3].

This paper makes two main contributions. First, we present a novel semi-
autonomous coordinated exploration system for a team of mobile robots in-
volved in a rescue scenario. The main novelty of the approach is to devise a
semi-autonomous strategy that allows an operator to give high level advices to
the entire team of cooperating robots. The team is responsible to coordinate and
decide who should fulfil the user requirements. Second, we present an evaluation
methodology for exploration strategies. Our methodology is based on an exten-
sive evaluation of several experiments on a high fidelity simulated environment
(i.e., the UsarSim environment), and then validation of the approach with real
robotic platforms. We are able in this way to compare and analyse different co-
ordination strategies for the exploration. In particular, we compared the totally
autonomous coordination exploration with the semi-autonomous approach.

The idea of providing high level advices to a team of agents has been ad-
dressed in the DEFACTO system by Schurr et al. [4]. The DEFACTO system
is a system built on top of the RoboCup rescue simulator used to train incident
commander for intervention in large scale urban emergencies. Coordination is
provided using Machinetta, a general framework for teamwork in multi-agent
system [5]. With respect to the DEFACTO system our work is more focused to-
ward specific robotic problems (e.g., cooperative SLAM, motion planning, etc.),
moreover, we specifically focus on a single aspect of the coordination problem
(i.e., task assignment) to have a full evaluation of this issue.

The work by Wang et al. [6] addresses the cooperation of rescue robots super-
vised by human operator. Also Wang et al. use the Machinetta framework for
ensuring teamwork among robotic platforms. The work evaluates the coopera-
tion between robots and human operator via a series of experiments involving
different users. As before, our approach is more focused toward the specific eval-
uation of task assignment, and the use of real robotic platform.

2 Coordinated Exploration Strategies

The problem of coordinating the exploration of a set of robots can be conve-
niently formalised as a task assignment problem [3]. Task Assignment is a very
well known approach to address coordination of autonomous robot activities.
The classical task assignment formulation is to assign a utility value to the task
to be executed. The utility function is dependent on the task and on the status
of the agent that is allocated to that task. The goal of the task assignment is to
maximise the sum of the utility of the allocation of agents to tasks.



288 S. La Cesa et al.

We realised two coordination strategies: one is distributed and robots are
not controlled by the human operator, while the second one is supervised and
centralised.

2.1 Distributed Autonomous Coordination

In this strategy robots are completely autonomous.
A task assignment strategy is employed to allocate robots to different tasks.

A task in our environment is a goal target to be reached by the robot Our
approach extends the method proposed in [7]. In particular, with respect to [7],
in our approach the number of tasks to be executed is not fixed, and there is no
total priority order for the tasks.

Our approach works as follow: each robot maintains a structure containing
the tasks known to all the agents. Each robot locally computes the current target
points to reach, and verifies that they are not within the current tasks already
known to the system. To compare the tasks a simple nearest neighbour technique
is used. Each robot sends in broadcast the new tasks to all team mates, computes
its utility function for all the tasks present in the system and broadcasts the
function values to all other team mates. Each robot computes autonomously the
best allocation of robots to targets and then execute the best task according to
the chosen allocation. The best allocation is computed considering all possible
assignment of robots to tasks, and choosing the one that maximises the sum of
utility functions.

The algorithm used to compute the utility function is shared among all robots
and is based on specific parameters that influence the task execution (e.g. dis-
tance to travel). Since all robots use the same algorithm with the same data,
eventually they will all converge to the same solution, even though temporary
oscillations of the algorithm might happen due to noise in the robot local es-
timate of the utility functions. Following the approach in [7] we use hysteresis
on the allocated tasks to avoid this problem. Whenever a task is accomplished
by a robot, a message is sent broadcast to all other team mates to update the
task set.

2.2 Centralised Semi-autonomous Coordination

The supervised centralised coordination strategy relies on a base station common
to all the robots, where all information are channeled. A human operator is in
charge of supervising the robot team by monitoring the mission execution and
by controlling the robots at different levels.

The central station is in charge of combining the single robot readings and
provide a global comprehensible picture to the human operator. In particular, the
base station combines the laser readings of different robots to build a consistent
joint map. To merge the laser reading a Rao-Blackwellized particle filter method
is employed. The method extends the work presented in [8], considering the joint
states of all the robots as the variable to be estimated.
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To ensure an effective control by the human operator a multi-robot graphic
user interface has been developed within the RDK framework [9] (see figure 1).
The multi-robot console allows the human operator to see the global map built
by the robot team, to see interesting states of the robots, and to control them.

Robots can be controlled using one of the following operational modes: Au-
tonomy, Navigation, Operated. When robots are in autonomy mode they will
execute the exploration strategy described in [10]. Moreover, they coordinate
using the algorithm described in section 2.1. When the Navigation mode is se-
lected, the robot waits for a goal point to be provided by the operator. When a
goal point is provided, the robot will autonomously navigate towards the speci-
fied point using the approach described in [11]. Finally, when the Operated mode
is selected the robot will not try to act proactively, waiting for low level com-
mands from the operator (e.g., joystick commands). Both the Navigation and the
Autonomous modes accept target points by the operator. When a target point
is inserted, it is sent to all the robots. Each robot will then perform the task
assignment strategy specified in the previous section, treating the goal point sent
by the human operator as a high priority task. In this way, the human operator
does not have to decide which robot is in charge of exploring a particular area
but can just signal interesting parts of the map to the robots and monitor their
execution. If a robot is in the Navigation mode, when it reaches the goal point
provided by the human operator, it will stop waiting for another goal point. If
a robot is in Autonomy mode, after reaching a human goal-target, it will keep
executing the frontier base exploration from the current position.

Notice that while the global map is estimated by a centralised process each
robot maintains a local map built autonomously. Therefore if a communication
breakdown interrupts the link between one robot and the central station, the
robot is still able to perform its tasks reasoning on its local map. The global
map is used only by the human operator to monitor the mission execution and
to control the robots.

Fig. 1. The multi robot control console Fig. 2. Map used for the experiments
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3 Experiments and Results

We conducted extensive experiments using the UsarSim [12] simulation environ-
ment, and then validated our approach on real robotic platforms.

3.1 Experiments in UsarSim

Our evaluation methodology is to perform experiments on a benchmark sce-
nario and extract significant metrics for each mission, varying some interesting
parameters.

To acquire quantitative data we used the UsarSim simulation environment.
UsarSim is a 3D high fidelity simulation of Urban Search And Rescue (USAR)
robots and environments. UsarSim is a valid tool for the study of basic robotic
capabilities in 3D environment. It offers several 3D models of robotic platforms
(P2DX, P2AT, Zerg, ATRVJ, etc. etc.) and sensors (Laser Range Finder, IMU,
Color Camera, etc).

A sensible metric to evaluate the performance of an exploration mission is the
time needed to complete the exploration.

Figure 2 reports a picture of the map used in the experiments. An important
parameter to consider into the experiments is the dimension of the map.

Our reference map is composed by a central corridor (16 meters long and
3 meters wide) and a series of rooms. We divide this map into three different
maps: a small size map (one third of the corridor plus the two small adjacent
rooms), a medium size map (two third of the corridor and two additional rooms)
and a large size map (the whole environment). Notice that, while the map used
for experiments has a clear structure, the representation that robots have of the
map makes no assumption of such a structure. In fact, experiments with real
robots have been performed in a much less structured environment (see next
section). The only assumption that must holds for our exploration method to
work correctly is to have planar environment. This is due to the SLAM algorithm
which is designed for such kinds of environments.

We used two wheeled robots: P2AT and P2DX, both of them equipped with
a Laser Range Finder.

To have a baseline value to compare between the different coordinated strate-
gies, we measured the time needed by a single autonomous P2AT1 and then com-
pute the percentage of time used by the other strategies with respect to this value.

The different strategies we compared are the following: i) Two autonomous
non-coordinated platforms AutNotCoord ; ii) Two autonomous coordinated plat-
forms AutCoord ; iii) Two supervised coordinated platforms SupCoord

Table 1 reports the obtained results. We performed several experiments for
each strategy. Since each experiment involves the exploration of a consistent part
of a building, the time of completion for each mission depends on several pa-
rameters. Therefore, the collected results have a consistent variance and cannot
be well represented with a simple average. To take into account this issue, we
report the interval between the minimum and maximum values obtained.
1 The exploration time of a single autonomous P2DX is very similar to the P2AT.
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Table 1. Comparison among the different coordination strategies over different envi-
ronments

Small Medium Large

AutNotCoord 80% 80%-85% 80%-90%

AutCoord 75% 70%-75% 65%-75%

SupCoord 65% 55%-60% 45%-55%

The results show several interesting points. First of all, the autonomous co-
ordinated system has better performance with respect to the autonomous not
coordinated one. In particular, coordination plays a crucial role for larger spaces.
This is because the larger the environment the more important is to avoid that
the same portion of space is covered by more than one robot. Second, the super-
vised coordinated strategy outperforms the autonomous coordinated strategy.
This can be explained considering that the human operator has more informa-
tion than the single robots. The autonomous coordinated strategy we employ,
exchanges only tasks to be accomplished by the robots, trying to optimise the
task allocation process. In particular, for our exploration scenario the robots
exchange only the current goal points of the exploration strategy, and they do
not exchange maps or map patches. When the supervised coordination strategy
is used, the human operator has a more complete knowledge of the environment
(given by the global merged map) and can make more informed decisions. How-
ever, notice that the supervised strategy requires a high amount of information
to be transfered from the robots to the central base station. Moreover, the cen-
tral base station should be always reachable through direct communication with
every robots.

Since the coordination algorithms evaluated and the exploration strategy used
do not make any assumption on the particular structure of the map, we believe
that obtained results should be valid for other types of environments and maps.
Moreover, since the computation of utility function for the Task Assignment
is demanded to each single robotic agent, the coordination algorithm can be
extended to take into account robots with heterogeneous sensing and mobility
capabilities.

However, a deeper investigation is needed, in order to clearly understand how
the obtained results relate to such situations.

3.2 Experiments with Real Robots

We validated our approach with two mobile platforms: a P2DX equipped with
an Hokuyo Laser Range finder, and a P2AT equipped with a SICK Laser Range
Finder. The experiments have been conducted in the arena set up in our lab.

Figure 3 shows the maps created by the robots during their mission. The
environment to explore is 7 × 6 square meters, and the two robots completed
the exploration in 10 minutes approximately. From left to right it is possible
to see the initial situation, a snapshot during the exploration process and the
final map. The P2DX is represented with a circle and the P2AT is represented
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with a square. In the maps it is possible to see the current tasks the robots are
allocated to (crosses in the map). Robots performed a coordinated supervised
exploration. Giving high level advices the operator was able to efficiently control
the system, nicely spreading the two robots.

Fig. 3. Cooperative exploration sequence

Figure 4 shows the two maps of the single robot. These are the maps the two
robots maintain locally. As it is possible to see the overlapping among the two
maps is minimal, as it is desirable in a multi-robot exploration task. On the
other hand, a bigger overlap between the two maps would have been beneficial
for the cooperative SLAM process, and would have produced a better quality
global map. In this work, we focused on minimising the exploration time rather
than having a better quality map.

Fig. 4. Maps of each single robots: P2DX left and P2AT right

4 Conclusions and Future Work

In this work we presented an evaluation of different coordination strategies in
a rescue scenario. We designed, realised and compared a totally autonomous
coordination strategy and a supervised coordination strategy. Quantitative ex-
periments have been performed using the UsarSim environment, and the system
has been validated also on real robotic platforms.
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An interesting future topic will be to extend our current approach to consider
possible lack of communication link between robotic platforms and the human
operator. This is a very important issue to consider and has a significant impact
on the overall coordination strategy used in our approach.
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Abstract. Developing an intelligent agent requires more than an Inte-
grated Development Environment (IDE). In multi agent environments or
systems equipped with artificial intelligence it is often difficult to obtain
the function or method which led to a particular behavior that is notice-
able from outside. In addition to previous dilemma, the publicity that
the RoboCup events get from the media provides an ideal opportunity
to show the state of art of these systems during RoboCup World Cup.

This paper describes the concept and the implementation of Team
Assistant 2006 as the next generation of TA2002. The idea is to provide
a tool that is able to assist developers to detect problems of their agents
both in single and cooperation mode and also organizers to have better
games.TA2006 won the second place in RoboCup 3D development com-
petition 2006.

Keywords: RoboCup, Soccer Simulation, Presentation, Analyzing.

1 Introduction

Developing an intelligent agent requires more than an Integrated Development
Environment (IDE). Many visualization and analysis requirements may arise at
any time in the project; and developing a tool to satisfy each requirement is
cumbersome and time-consuming.

In the past 10 years the simulation league was two dimensional, all players
and even the ball moved on the ground. During this time numerous sophisticated
tools were created for analyzing the simulated games such as Logalyzer or Team
Assistant[4].

The Logalyzer provides information about detected actions like passes and
several visualizations for the collected data about the game. The Team Assistant
is able to display information provided via agent logfiles along with statistics
about detected actions. The Team Assistant is also mentioned in the 2002 league
summary[7] as the winner of the presentation tournament.

In 2003, the 3D simulation was introduced including basic tools to view and
replay the simulated game. The tools used in 2D can not be used in 3D simula-
tions because of the lack of one dimension and a different format of the logfiles.

The current monitor is capable of showing the current simulated game (at
current time) and of replaying monitor logfiles. The replaying mode can be used

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 294–301, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Deeper Look at 3D Soccer Simulations 295

to watch previously simulated games again. There is also a “single step mode”
which provides slow motion replay. When trying to develop a behavior for an
agent or verifying behaviors acquired by machine learning methods it is hard to
determine which methods or functions led to the actions observed in the game.
This information is crucial when trying to debug or improve the agents in their
behavior and collaboration. Especially in the case of collaboration it is tedious
and time-consuming to check what each agents intention is. This is caused by
the fact that every logfile has to be searched for the right record of the actual
time displayed in the monitor by hand. Additionally, the agent logfiles are not
numbered according to the uniform numbers of the agents which complicates
finding the desired logfile.

The aim of this work as the next generation of Team Assistant[2] is to provide
a rich extensible tool, providing decent log playing capabilities alongside useful
agent debug and analysis information about agent’s behavior and collaboration
with other agents. The importance of the evaluation of agent teamwork has
been addressed in many papers for 2D simulation[5][8]. It also can be used as an
offline trainer to run training sessions with virtually unlimited scenario definition
options.

2 Related Work

In the 2006 soccer simulation development competition just a few tools were
introduced, such as “Virtual Werder Analyzer” or “UTUtd Monitor”.

The Virtual Werder Analyzer offers information about ball possession, suc-
cessful and unsuccessful passes and about good and bad actions[1]. In UTUtd
monitor, there are some common functions with this work such as the possibility
of agents to draw into the displayed scene or the displaying ability of text mes-
sages according to the current scene[6]. In 2D presentation competitions, tools
like Team Assistant also provides the detection of (double-) passes, goal shots,
dribbling and etc. Statistics about these detected events are shown while playing
game. In Caspian monitor, there is a commentator that can comment the game
according to the current detected situation. These comments were the main as-
pect of that work. But none of the above tools were extensible enough for new
requirements.

3 Requirements

In general we can divide 3D Soccer Simulation requirements into two main parts:
“Developers’ requirements” and “Organizers’ requirements”.

3.1 Developers’ Required Features

In consultation with other agent developers, providing an easy and clear way
to gather information about what the agent intends and how the world looks
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like, according to the agent, is essentially needed. The following features are
judged beneficial and essential to debug handwritten behaviors and to verify the
decisions of learned behaviors.

While analyzing a special situation of the game it is obvious that forward and
backward replay in different speeds is useful. With this possibility the situation
can be analyzed again without starting the game from the beginning until the
desired situation is reached. To gain knowledge of the agents’ intentions in a
situation an output of agents’ logfile according to current time is needed.

In addition to the logfile displaying it is valuable to enable the agents to draw
information directly into the displayed scene, like a line from the agent to the
position it intends to move to. Also filtering the logfile output may be helpful
to display only those information needed by the developer. This way only those
information provided by the current developed behavior could be displayed. This
idea can be achieved by using layered logs[3].

New camera positions, like birdview which resides directly over the agent of
interest, may be beneficial. When using the single step mode of the monitor
displaying the ball’s and player’s movements for some time forward can be an
improvement, the developer could see the next movements without proceeding
forward in scene display. Displaying the offside line is necessary. In some situa-
tions it could be difficult to distinguish on which side of the offside line an agent
is, so marking agents that are in an offside position if the ball would be played
to them may be a good feature. Detecting events and the number of their occ-
urrence may provide essential information about what parts of the agent have
to be worked on (i.e. if passes often fail there is some space for improvements).
Those events are: pass success/fails, ball dribbling, lost balls, goal shot (success,
out, intercepted) and kick out. By detecting event sequences more information
can be extracted such as lost balls after dribbling.

3.2 Organizers’ Required Features

The running of simulation league in comparison to other RoboCup fields, is so
quiet and therefore it doesn’t have enough visitors. So with showing a better
illustration of games and final goal of RoboCup, this league could be more inter-
esting for visitors. The publicity that the RoboCup events get from the media
provides an ideal opportunity to show the state of art of these systems during
RoboCup World Cup.

4 Implementation

When talking about a logplayer or a monitor this essentially means the same
program in two different operation modes, logplayer means that the program
replays logfiles of a previously simulated game, monitor that a game that is
currently simulated is displayed.
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4.1 Features

Some features of TA2006 that can be useful in developing agents are:
Forward and backward replay in different speeds even in live games is achieved

by storing data into a new data structure. Playback is much faster now, it has
to be slowed down artificially leading to the opportunity of different playback
speeds.

The tool is also helpful for probing the agents’ internals. The Layered Disclo-
sure concept[3], first introduced in CMUnited99 simulated agents, and it proved
to be very helpful in development of intelligent agents. The goal of the Layered
Disclosure concept is to make various agent characteristics.

Observable, without overwhelming the human observer with data. Realizing
this goal needs the agent to store a log of all relevant information from its
internal state, world model, and reasoning process. Then a tool must be used to
synchronize the log with a recording of the observable world and it must provide
an interface to allow the developer/observer to probe a given agent’s internal
reasoning at any time and any level of detail. Our tool provides all the necessary
functionality. The times according to the various agent outputs is also parsed at
startup. When displaying, the fitting record of the agent logfile is found using
the time currently displayed by the monitor. Some none-textual logging facility
comes handy for the human developer/observer; the tool understands a simple
notation for describing 3D or 2D geometric shapes. For example an agent may
write in its log file:

<0><49> <Behavior> (Command) Sphere ball
( 0.023f, 0.09f, 0.111f, 0.130f, 0.5f, 0.5f, 0.5f, 0.3f );

And when the log-player is showing the cycle 49, the developer can select the
agent, and the log- player draws a sphere with radius 0.130 at point (0.023, 0.09,
0.111). (fig. 1).

Implemented commands are: Drawing circles, spheres, cubes, lines, playing
sounds, Showing a text on the screen and many more. In case of filtering the
logfile output the developer just have to change the log level. New camera view
modes were implemented, most of them are adjustable in a way (camera height,

Fig. 1. Draw shapes based on output of an agent, for example agent can command the
monitor to render its internal world model on the screen
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Fig. 2. Ball trajectory

Fig. 3. Robots vs. Humans, Different models can be used to represent the agents in
the visualization

distance or point to look at). Some camera types like tele, top, tower views are
implemented. Also cameras can reside directly over the agent of interest.

Displaying the ball’s and player’s movements for some time forward is solved
as lines in the color of the team or white for the ball. The length of the line (how
far into the future movements are shown) can be adjusted. The agents track
(movements throughout the whole game) can also be displayed, this track can
be colored according to the agents movement speed (fig. 2).

In case of presentation, Team Assistant 2006 provides rich game-viewing con-
trols, plus some eye- candy features for on-site demonstration of a game, including:

– Commentator
– Automatic replays
– Customizable 3D agent model (fig. 3)
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– Complete control over camera position and direction
– Several preset cameras (Tele, Top, Tower, ...)
– The ability to display different camera views side-by-side
– Visualizing Catch and Kick commands of agents

When the tool is in trainer mode, it allows defining training sessions or sce-
narios. A scenario definition contains a starting state and/or an end condition.
Those can be specified using Angel Scripts. The trainer mode also needs a server
counterpart.

4.2 Additional Features

TA2006’s main power lies in its ability to be extended using AngelScript plug-
ins. To get a glimpse of what can be done within a plug-in, it’s good to mention
that in current release the Commentator itself is a plug-in, all sound effects
are provided by a plug-in, some training/test sessions are wrote using plug-ins,
the game statistics are both calculated and rendered on screen by a plug-in. In
general, plug-ins can Obtain:

– Locations of all objects
– State of the match (play mode, time,...)
– Player actions (requires new server to monitor protocol)
– Some processed values (ball and agents’ speed)

And Can Perform:

– Move agents and ball
– Change play mode of the match
– Control the log player (change playback speed, jump to a specific cycle,...)
– Draw shapes in the field
– Draw markers on the field
– Write/Draw on the screen
– Control the camera
– Play audio file

4.3 Other Features Derived from the Implementation

The new data structure of the program allows the user to use single step mode,
for- and backward even when watching the game “live”. The server is contin-
uing the simulation in background, even if the monitor is in single step mode.
Functions that are independent from agent logfiles, such as movement display,
can be shown in this mode.

5 Results

The logfile output is useful to understand the agents behavior. This program
has replaced the lite monitor that comes with the simulation server. The agent
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may communicate its decisions to the developer. (i.e. which role it plays, which
behavior of the role it has chosen and what action it selected). In occurrence of
an error in the ball movement prediction the agent was changed to display its
data about the ball (its position and movement vector according to the agents
world model). This way the error became visible. Without displaying that data,
localizing the error would have taken much longer. When creating a behavior
that covers an opponent, it is mostly wanted that only one player covers an
opponent at a time. To verify the opponent selection the agent can simply draw
a line from himself to the opponent it intends to cover or include the chosen
position into its drawings. When displaying the draw commands of all agents
it becomes visible if something is wrong with the selection or the position the
agent has chosen to move.

Fig. 4. Drawing offside line and automatic replay

The ability of reverse playback of the game gives the opportunity of analyzing
the same scene again without watching the game from the beginning. Also slight
transitions in action selection may be analyzed without much interference. This
feature in addition to the display of agentlogs (in both ways, text and drawings)
gives the opportunity to understand the agents decisions according to its own
world model, and not only the real simulated world displayed in the monitor. The
ability of delayed playback and direct analyzing of a currently simulated game
provides a real speedup in development in comparison to other tools. Simulating
a 3D game may take up to 10 or 20 min which is a long time the developer has
to wait in order to for example analyze the previously mentioned ball approach
in slow motion. With the delayed playback that situation may be analyzed while
the game is still simulated in background. After the analyzing was finished the
game may be watched time shifted in normal speed or the replay may be fastened
to reach the most recent scene. The track display in the 3D scene along with
the plotting opportunities were giving the developer essential information about
the agents or ball movements throughout the game. This way the developer can
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find agents which are not moving much or fast, which may point to a suboptimal
formation or behavior. By viewing the ball movement plot (fig. 2) of the game
between Aria (left) and ZJubase (right) it is obvious that the ball was mostly
located on the left side of the field and though that ZJubase dominated the
game. ZJubase won this match 1:0.

6 Conclusion

The logplayer can be a useful tool when trying to resolve strange behavior of an
agent or verifying the proper work of the agent. The SBCe team resolved some
problems within their code using the logplayer. These resolved problems are
namely the examples given in section 5. The resolving of these problems would
have taken longer without the possibility of drawing or text output. Due to the
parsing at the beginning the startup of the logplayer takes longer in comparison
to the lite monitor/ logplayer, but the playback is much faster and the monitor
does not have to be restarted to watch the game again.

Finally this tool is intended to be a general-purpose, highly customizable
package. We think it has the potential to be used as the primary analyzer,
visualizator, and logviewer for anyone interested in developing agents for the
RoboCup 3D Soccer Simulator. TA2006 won the second place in RoboCup 3D
development competition 2006.
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Abstract. The mean-shift algorithm is an efficient technique for track-
ing 2D blobs through an image. Although it is important to adapt the
mean-shift kernel to handle changes in illumination for robot vision at
outdoor site, there is presently no clean mechanism for doing this. This
paper presents a novel approach for color tracking that is robust to il-
lumination changes for robot vision. We use two interleaved mean-shift
procedures to track the spatial location and illumination intensity of a
blob in an image. We demonstrate that our method enables efficient real-
time tracking of the multiple color blobs against changes in illumination,
where the illuminace ranges from 58 to 1,300 lx.

1 Introduction

Tracking is a method of estimating the spatial location of a target in a camera
image. It often requires real-time processing, so high-speed processing is essential.
For tracking 2D blobs through an image sequence, the mean-shift algorithm
is an efficient technique [1,2,3]. It seeks the nearest mode of a point sample
distribution. Collins [4] proposed a method of scale change mean-shift and She
[5] proposed a method of considering shape features. The mean-shift algorithm
has a low calculation cost and offers high-speed execution.

Tracking is difficult when lighting changes because the RGB values from the
image changes with the lighting. Thus, it is not possible to distinguish a moving
object or lighting change. In addition, problems of lighting changes are usually
treated as those of color transformation between different lighting conditions.
Some researchers have proposed linear color transformation [6] and independent
transformation [7] of each RGB component, which are derived from a physics-
based color model. On the other hand, statistics-based approaches have also been
proposed. Miller [8] proposed a method of non-linear color transformation using
color eigenflows learned from multiple pairs of images of the same scene under
different lighting conditions. It is, however, difficult for a robot vision system to
get multiple reference colors in unknown lighting conditions.

This paper presents a novel approach for color tracking that is robust to
lighting changes for robot vision. We use two interleaved mean-shift procedures
to track the spatial location and illumination intensity of a blob in an image.

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 302–311, 2008.
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We show that our method enables real-time tracking of a color blob for varying
lighting conditions.

2 Color and Illuminance

The illuminance at any surface of known color can be measured by observing the
RGB values obtained by a CCD camera. Changes in the light source or meteoro-
logical effects can change the illuminance, resulting in changes in the measured
RGB values. Figure 1(a) shows various color patches (Blue, Black, Green, Pink,
Purple, White, Yellow) under illuminance ranging from 10 to 1400 lx. The setup
used in our experiments is illustrated in Figure 1(b). The illuminance on the ob-
ject’s surface was obtained by an illuminance meter placed on the object, and RGB
values were captured by a color CCD camera mounted at a height of 280 cm.

Fig. 1. Experimental setup

Using the color segmentation technique based on thresholding [9], it is difficult
to distinguish color classes in RGB color space, because we cannot create a
threshold criterion that specifies how the color space should be divided up into
a handful of color classes. Color clustering using the HSI color system is robust
to lighting changes, but it is difficult to distinguish a moving object and light
change, because it does not represent illuminance on the target. To solve this
problem, we augment the RGB color space to make an RGB-illuminance space,
and then we use a tracking method that searches for a mode within neighboring
pixels.

2.1 RGB-Illuminance Space

Our approach uses RGB-illuminance space coupled with the estimation of il-
luminance intensity in each frame to distinguish color classes. An example of
color distributions in RB-illuminance space is shown in Figure 2. We can see
that it is possible to classify color classes at each illuminance plane, as shown in
Figures 2(b) and (c). However, a fixed value for thresholding does not work
due to shrinking in the color space with respect to illuminance. In the RGB-
illuminance space, reference-based searching such as the k-NN method for color
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Fig. 2. RGB-illuminance space: (a) color distribution in RB-illuminance space, (b) RB
value of each color class at 100 lx, and (c) RB value at 200 lx

clustering can work, but it takes a lot of time due to the number of reference
patterns for each illuminance. Therefore, we use a color-illuminance model for
each color class.

2.2 Color-Illuminance Model

The relationship between RGB values and illuminance is not linear. Thus, we
use curve fitting on each RGB distribution over the illuminance intensity. Given
the illuminance intensity Ev, we can estimate the RGB color values Îr, Îg, Îb

using the following equations:

Î(Ev) = aEv2 + bEv + c (1)

where a, b, and c are unknowns computed by the least-squares method. Note
that we assume that the object’s surface has diffuse reflection.

2.3 Iris Adjustment

The RGB values is influenced by some camera parameters such as iris and white
balance. To cope with special lighting situations, the iris (F-number) can be ad-
justed manually to let in more or less light. The F-number is given by F = f/D,
where f is the focal length and D is the iris diameter. It affects the amount of light
energy admitted to the sensor and plays a significant role in the resulting image.
The relationship between intensity I and F-number is expressed by

I ∝
(

D

f

)2

=
(

1
F

)2

. (2)

The smaller the F-number, the more light admitted to the sensor, and hence
the better the image quality achieved in low-light situations. Figure 3(a) shows
RGB curves from a color-illuminance model for F = 4 and observed RGB values
for F = 5.6. Using Equation (2), we can convert the RGB values observed at
any F-value to the corresponding value at a desired F-value. F = 5.6 means
I ∝ 31.36 and F = 4 means I ∝ 16, so the RGB values at 1400 lx with F = 5.6
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Fig. 3. Adjusting RGB color value by F-number

will be same as the RGB values at 700 lx with F = 4. Figure 3(b) shows an
example of converted RGB values.

If we prepare a color-illuminance model for a given F-value in advance, we
can estimate the color-illuminance model at the F-number corresponding to our
camera’s iris setting. In this paper, we assume that our light source has a constant
color temperature, so we do not consider the changes in white balance of the
color camera.

3 Mean-Shift Tracking through Illuminace Space

We propose a method for mean-shift-based color tracking through illuminance
space, which represents the spatial location and illumination intensity of a blob
in an image.

3.1 Mean-Shift in Image Space

The mean-shift algorithm is a simple nonparametric method for seeking the
nearest mode of a sample distribution. It has recently been adopted as an efficient
tracking technique. When the mean-shift method is used for object tracking, the
gradient density is formed by weight w(x) at each image pixel x. The core of
the mean-shift tracking algorithm is the computation of a target’s motion vector
from a location x to a new location x′. We get the new location x′ = x + Δx

from the mean-shift vector

Δx =
∑N

i=1 K(xi − x0, σ)w(xi)(xi − x0)∑N
i=1 |K(xi − x0, σ)w(xi)|

, (3)

where the set {xi}i=1,...,N represents the locations of pixels around the current
location x and K is a kernel function such as the Gaussian kernel. Generally,
a weight map is determined using a color-based appearance model. In [3], the
weights were obtained by comparing a histogram qu, where u is a histogram bin
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index, with a histogram of colors pu(x0) observed within a mean-shift window
at the current location x0. In fact, the weight at pixel location x is given by

w(x) =
m∑

u=1

δ [b(x) − u]
√

qu

pu(x0)
, (4)

where m is the total number of features, δ is the Kronecker delta function and
b(x) is feature value of the pixel at x.

3.2 Mean-Shift in Illuminance Space for Single-Color Tracking

It is difficult to track a color blob under varying light conditions due to the
limitations of color space described in Section 2. We augment the mean-shift
tracker to search in illuminance space by introducing two interleaved mean-
shift procedures to track the mode in image space and in illuminance space,
which represent the spatial location and illumination intensity of the target
blob, respectively. These two procedures are described below.

Initial input. A color-illuminance model of the target color is deformed by
scaling with the current setting of the iris (F-number). The initial input is a
deformed color-illuminance model of a specific color and an estimate of the
blob’s current illuminance intensity Ev and spatial location x0 = (x, y) in the
image.

Step 1: Mean-shift in image space. Given the illuminance intensity Ev
in the current frame, the estimated RGB values (Îr , Îg, Îb) are computed using
Equation (1) using the color-illuminance model for the specific color. Then, we
compute a location weight map wloc(x) between the target color and the RGB
values I(x) for each pixel.

wloc(xi) =
Îr(Ev)Ir(xi) + Îg(Ev)Ig(xi) + Îb(Ev)Ib(xi)√

(Î2
r (Ev) + Î2

g (Ev) + Î2
b (Ev))(I2

r (xi) + I2
g (xi) + I2

b (xi))
(5)

Then the spatial mean-shift vector is obtained as

Δx =
∑N

i=0 Kloc(xi − x0, σxy)w(xi)(xi − x0)∑N
i=0 | Kloc(xi − x0, σxy)w(xi) |

(6)

where Kloc is a spatial kernel function given by

Kloc(x, σxy) =
1

2πσ2
xy

exp(
−(x2 + y2)

2σ2
xy

) (7)

and the summations are performed over a local window of N pixels around the
current location x. Finally, we can get the new location x′ = x + Δx from the
mean-shift vector.
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Step 2: Mean-shift in illuminance space. Our approach uses a mean-shift
procedure to estimate the illuminance intensity by a local window of pixels
around the new location x′ = (x′, y′) obtained in step 1. First, we compute
the color similarity at every illuminance (k = 0, ..., max) for each pixel x by the
following equation.

S(k,x) =
Îr(k)Ir(x) + Îg(k)Ig(x) + Îb(k)Ib(x)√

(Î2
r (k) + Î2

g (k) + Î2
b (k))(I2

r (x) + I2
g (x) + I2

b (x))

(k = 0, ..., max) (8)

Then, we compute an illuminance weight map wEv(), which is 1D array, by the
following equation:

wEv(k) =
N∑

i=0

Kloc((xi − x′), σxy)S(k,xi) (9)

where Kloc is a spatial kernel function. This works as a voting mechanism from
neighbor pixels using illuminance, as illustrated in Figure 4.

This mean-shift in illuminance space is performed on the 1D array of results
to locate the mode. The illuminance mean-shift vector is then obtained by the
equation:

ΔEv =
∑max

k=0 KEv(k − Ev)wEv(k)(k − Ev)∑max
k=0 wEv(k)

, (10)

Fig. 4. Calculation of weight map for illuminance space
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where Ev is the current illuminance, and KEv is a kernel function for illuminance
space given by

KEv(k, σEv) =
1√

2πσ2
Ev

exp
(

−k2

2σ2
Ev

)
. (11)

Finally, we can get the new illumination intensity Ev′ = Ev + ΔEv from the
mean-shift vector.

Since the range of illuminance space is set as 0 < k < max (lx), the kernel
function for illuminance space KEv limits the search to around the illuminance
estimated in the last frame. However, we cannot get the illumination intensity
in a rapid light change if σEv is small and the illuminance estimation accuracy
is reduced if σEv is large. Therefore, we obtain σEv from the maximum point
kmax of the illuminance weight wEv(k) and the difference in the front frame’s
illuminance Ev. It is calculated by

σEv = (σmax − σmin) × | Ev − kmax |
Evmax − Evmin

, (12)

where σmax is the maximum value of σEv, σmin is the minimum value of σEv,
Evmax is the maximum value of Ev, and Evmin is the minimum value of Ev.

Step 3: Iteration. Iterate by interleaving steps 1 and 2 until both |Δx| < εxy

and |ΔEv| < εEv.

3.3 Mean-Shift for Multiple-Color Tracking

We augment the single-color tracking method described in Section 3.2 to multiple
colors. Multiple color-illuminance models and weight maps for each target color
are prepared in advance. For the mean-shift in image space, we compute a spatial
location weight map wc

loc for each color class c by Equation (5) using each color-
illuminance model. Then, the weights for spatial location are integrated into
one weight by selecting the maximum value at the same pixel. The integrated
weight map for spatial location w′

loc is obtained from each color weight map
wc

loc(c = color variety) by

w′
loc(xi) = wloc(xi)c1 wloc(xi)c1

wloc(xi)c2
, (13)

where wloc(xi)c1 is the 1st maximum value in multiple colors c at xi and
wloc(xi)c2 is 2nd one. Here, the color of c1 class, which has the maximum value,
is stored for the next step of computing the mean-shift vector in illuminance
space.

For the mean-shift in illuminance space, we compute the color similarity for
each illuminance for each pixel x using the color-illuminance model of the target’s
color. Then, the weight for illuminance space (1D array) is computed according
to Equation (9). This mean-shift procedure is iterated until convergence, as
described in 3.2.
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4 Experimental Results

The performance of the proposed method was evaluated by experiments in terms
of robustness and accuracy in varying light conditions.

4.1 Experiments

A color camera was mounted at a height of 2800 [cm], as shown in Figure 1.
In these experiments, the color temperature of the light source (light color) was
fixed, and the white balance and iris value were not changed during the tracking
task. Initial illuminance Ev and spatial location (x, y) of the colored object to
be tracked were given as initial values for mean-shift tracking. To determine the
accuracy of the location estimation, we compared the values estimated by the
proposed method to ground truth, which was measured manually by a human.
We also measured the illuminance intensity on the surface of the tracked object.

4.2 Experimental Results for Single-Color Tracking

Figure 5(a) shows tracking examples of the proposed method and the mean-shift
weight map. Figure 6 shows the location errors for the proposed method and the
general mean-shift method and the estimated illuminance on the object, which
ranged from 50 to 1200 lx as a result of changes in the intensity of the light source.
We can see that our method achieved more accurate location estimation than
the general mean-shift method. Since it simultaneously computes location and
illuminance, i.e., the location of the colored object while estimating the surface
illuminance, our method can track the object under varying lighting conditions.
When the light changes rapidly, e.g., due to flickering, our method can track a
colored object by calculating σEv of the illuminance kernel function KEv at each
frame (see Figure 6(a)).

Fig. 5. Tracking example of the proposed method
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Fig. 6. Experimental results

Figure 5(b) shows examples of multiple-color tracking by our method using
the integrated weight map. It is clear that our method can be easily applied to
track multiple colors.

5 Conclusion

In this paper, we proposed a tracking method using two interleaved mean-shift
procedures to track the mode in illuminance space, which represents the spatial
location and illumination intensity of a blob in an image. We demonstrated that
our method enables real-time color tracking that is robust to changes in illu-
mination, where the illuminance ranges from 50 to 1200 lx. Since this method
estimates the illuminance from the pixels of the tracked object and not by us-
ing the entire image, reliable color tracking is achieved even when the lighting
changes. Color tracking when the color temperature of the light source (light
color) varies is left as future work.
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Abstract. Aiming to reduce cycle time and improving the accuracy on tracking, 
a modified adaptive control was developed, which adapts autonomously to 
changing dynamic parameters. The platform used is based on a robot with a 
vision based sensory system. Goal and obstacles angles are calculated relatively 
to robot orientation from image processing software. Autonomous robots are 
programmed to navigate in unknown and unstructured environments where 
there are multiple obstacles which can readily change their position. This 
approach underlies in dynamic attractor and repulsive forces. This theory uses 
differential equations that produce vector fields to control speed and direction 
of the robot. This new strategy was compared with existing PID method 
experimentally and it proved to be more effective in terms of behaviour and 
time-response. Calibration parameters used in PID control are in this case 
unnecessary.  The experiments were carried out in robot Middle Size League 
football players built for RoboCup. Target pursuit, namely, ball, goal or any 
absolute position, was tested. Results showed high tracking accuracy and rapid 
response to moving targets. This dynamic control system enables a good 
balance between fast movements and smooth behaviour. 

1   Introduction 

A dynamic approach was employed to control the movement of an autonomous robot 
which is meant to navigate towards a moving target or goal, avoiding obstacles and 
collisions. Navigation direction, φ, is a behaviour variable which varies from 0º to 
360º relatively to an external reference. 

In Fig. 1 is represented the robots’ navigation direction φrobot, as well as target 
direction ψtarget and obstacle direction ψobs. The target direction is the desired value to 
navigation direction. The direction of the obstacle is the erroneous direction, which 
must be avoided by the robot [1]. 

The robot movement is generated by continuously calculating values for the 
navigation direction. The time series φ(t) is generated by a dynamic system based on a 
differential equation in which the state variable is the robots’ navigation direction:  
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( ) ( ) ( )robotobsrobotettrobot
robot fff

dt

d ϕϕϕϕ +== arg  (1) 

 

Fig. 1. Navigation direction of the robot depending on target and obstacle directions 

The vector field of this dynamic system is build from a certain number of addictive 
forces, each one specifying a particular value (attractive or repulsive) for the 
navigation direction. Each of these forces is characterized by a singular direction 
value, ψtarget or ψobs, intensity of attraction or repulsion and also by the range of 
direction values affected by them. A force by itself establishes an attractor, state 
asymptotically stable, or a repulsor, state asymptotically instable in the dynamics of 
navigation direction. 

An attractive force, ftarget, is used to pull the system to the desired value, namely to 
the target direction. On the other hand, a repulsive force, fobs, ensures that the system 
avoids moving towards the obstacle direction. Summing all these forces, results in a 
non-linear dynamic system [2]. 

Since all angles are measured related to an external reference axis, the 
contributions of obstacles and target to the dynamic system do not depend on the 
actual orientation of the robot. This navigation control system was implemented and 
experimental essays were carried out on an autonomous robot. 

2   Navigation Direction Control 

2.1   Reaching a Target 

The differential equation that describes the system behaviour to pursuit a target is: 

( )( )γψϕϕ ⋅−⋅−= ettrobot
robot k

dt

d
argtanh  (2) 

where: 
φrobot – Navigation direction of the robot, ψtarget – Target direction. 
k – Maximum value of the attractive force, γ – Target attraction 
intensity 
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The choice of this equation is not arbitrary, because the function of hyperbolic 
tangent has only one zero, the attractor (fixed point), and stabilizes at maximum and 
minimum values for the direction variation of the robot in time. 

As the robot moves, the target direction varies, pulling the attractor over the 
possible values for the navigation direction, as represented in Fig. 2. 

 

Fig. 2. Fixed point localization variation (attractor), as a function of the robot movement and 
target displacement 

The rate of the direction variation in time corresponds to the angular velocity or 
robot rotational movement. The behaviour variable used for calculations was obtained 
from the difference between the robot direction angle and the target angle. 

ettrobot argψϕα −=Δ  (3) 

Thus, the differential equation assumes the form: 

( ) ( )γαωϕω ⋅Δ⋅−== tanhmaxdt

d
t robot  (4) 

where: 
ω – Angular velocity of the robot, Δα – Target angle relative to the 
robot 
ωmax. – Maximum rotation velocity, γ – Target Attraction Intensity 

In this way, there isn’t any shift of the attractor fixed point, since what really 
matters is the difference between the robot navigation direction and the target 
direction. This difference should always take the value zero. 

No matter the navigation direction or the target direction, every time the difference 
assumes a non-zero value, the system acquires a positive or negative angular velocity 
which decreases as the difference becomes null. At that time the system stabilizes and 
the robot stops. This fixed point is stable and is denominated attractor since the 
direction variation rate is negative at that point and the system tends to the desired 
value. The angular velocity shown in the picture above (omega), is an entry parameter 
to the robot command functions that control the motors and varies from 0 to 40. 

A very important parameter is γ, since it allows the specification of the intensity of 
the target attraction. In other words, it defines the speed variation of the angular 
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velocity, or system time-response. A special attention must be given to the parameter 
γ since high values could make the system unstable. 

2.2   Obstacle Avoidance 

The differential equation which describes the system behaviour for obstacle 
avoidance is given by: 

( )
( )

2

2

2δ
ψϕ

ψϕλϕ obsrobot

e
dt

d
obsrobot

robot

−
−

⋅−⋅−=  (5) 

where:           φrobot – Robot navigation direction, ψtarget – Target direction 
λ – Intensity of repulsive force, δ – Range of repulsion 

The obstacle repulsive force magnitude depends on the distance to the robot. It can 
be modelled by the following equation: 

2
1

ββλ
d

e
−

⋅=  
(6) 

where: β1 – Maximum intensity of the repulsive force 
β2 – Decline rate of the repulsion intensity with the distance to the obstacle 
d – Distance to the obstacle 

The repulsion range depends on the size of the object, the bigger the obstacle the 
greater the range (Fig. 3). 

 

Fig. 3. Repulsive force as function of obstacle presence 

Following the same technique as the target pursuing, as the robot moves also a 
repulsor fixed point shift occurs in the navigation direction. This brings up a repulsive 
force that compels the system to move away from this value due to the slope’s 
negative value of the tangent to the curve at this point. As shown in Fig. 4, the 
intensity of the repulsive force varies according to the obstacle distance. 
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Fig. 4. Intensity of the repulsive force varying according to the obstacle distance 

In this case, the behaviour variable is the angle difference between the robot 
direction and the target angle. The functions corresponding to obstacles will be 
continuously shifting along the same axis depending on their relative angles to the 
robot.  

In the same way, the direction variation rate in time corresponds to the angular 
velocity or rotational movement of the robot. 
The differential equation assumes the form: 

( ) ( )
( )

2

2

2δ
βα

βαλϕω
Δ−Δ−

⋅Δ−Δ⋅−== e
dt

d
t robot  (7) 

where:           ω – Robot’s Angular velocity, Δα – Target angle relative to the robot 
∆β – Difference between obstacle and target angles 

As it is possible to get an unlimited number of obstacles in an unknown 
environment, the global corresponding function is given by the sum of each of the 
individual forces, which results in the following equation: 

( ) ( )
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2 2

2

δ
βα

βαλϕω  (8) 

where: n – Number of obstacles 

The repulsive intensity to the obstacle, i, is given by the equation: 

2
1

ββλ
id

i e
−

⋅=  
(9) 

The robot behaviour is based on the sum of all forces, including obstacles repulsive 
forces and the target attractive force. The resulting curve can assume many forms, as 
in Fig. 5. In this particular example, besides the target there are two obstacles placed 
in different directions. The resulting sum is a dynamic non-linear function (Fig. 6). 
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    Fig. 5. Target and 2 obstacles vector fields                    Fig. 6. Resultant vector field 

Depending on the robot navigation direction, the system may adopt any of the 
attractor fixed points, stepping away from the repulsors. As robot moves, all vector 
fields vary, and attractor and repulsive points appear and disappear in a dynamic way. 

This is an adaptive control to an unknown environment. The self decision is 
dynamic, so the behaviour is very smooth, similar to human decisions. 

3   Linear Velocity Control 

The robot linear velocity formula is continuously generating values so that the robot 
moves in a straight line to the target. This series of values, xrobot(t), are generated by a 
dynamic system formulated by the following differential equation: 

( )robotett
robot xf
dt

dx
arg=  (10) 

The linear velocity control dynamic system differential equation, is as follows: 

( )( )( )λσ ⋅−−⋅−== ettrobot
robot xxv
dt

dx
tv arg.max tanh)(  (11) 

where: 
v –Robot linear velocity, xrobot – Robot position in a straight line to target 
vmax. – Robot max. linear velocity, xtarget – Target position in a straight line 
to the robot 
σ – Security distance to the target, λ – Attraction intensity to the target 

Note: ettrobot xxd arg−=Δ , (distance to target) 

As it can be seen in Fig. 7, when the difference between the robot and target position 
is equal to the safety distance the robot must stop. 

The linear velocity indicated on the chart (v), is an input parameter to the function 
of robot motors and ranges from 0 to 100 (there is no specific unit). The distance to 
the target also ranges between 0 and 100. 
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Fig. 7. Robot linear velocity graphical representation 

As in the rotational movement, one important parameter is λ, because it allows 
specifying the target attraction intensity, also known as robot response time. But this 
value must not be very high otherwise the system becomes unstable. 

The equation implemented on the robot and represented in figure 8 is: 

( )( )015.010tanh100)( ⋅−Δ⋅−= dtω  (112) 

4   Experimental Results 

The robot’s behaviour, using dynamic control, was first tested by creating a moving 
target (ball) in an environment without obstacles. It should be noticed that robot 
orientation, obstacles and target angles as well as respective distances were obtained 
through vision software. Fig. 8 shows results of rotational velocity variation in terms 
of target angle. The reference angle 180º means the robot is facing the target. 

Evolution of Rotation Speed and Δα with time
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Fig. 8. Rotational velocity and corresponding angle between ball and robot 
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Linear Speed and Target Distance with time
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Fig. 9. Robot linear velocity versus target distance 

The variation of linear velocity is represented in Fig. 9 as function of time and 
distance to the target. The value “95” is a reference position indicating that the robot 
reached the target. When the target moves away from the robot this value decreases 
and vice-versa. One unit of time corresponds to one frame. The processing cycle time 
is about 66ms. 

5   Conclusions 

From the experimental results shown above it can be concluded that the robot 
responds very fast to changes, and hence maintaining a smooth behaviour through 
time. This type of control doesn’t need calibration parameters as opposite to PID 
control approach previously used [3]. Besides, the battery charge does not have any 
influence on the robot movement performance as happened with PID control 
algorithms. 

This fast and stable dynamic control provides a very good precision and suits very 
well applications where low time-consuming algorithms are required for navigation in 
unknown environments. 

Soon the complete control algorithm will be tested with moving obstacles included. 
Theoretically it is a very good adaptive control model. 

The team would like to thank Prof. Estela Bicho for her support. 
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Abstract. Most of the problems in the RoboCup soccer domain suffer from the 
noisy perceptions, noisy actions, and continuous state space. To cope with these 
problems, using Fuzzy logic can be a proper choice, due to its capabilities of 
inferring and approximate reasoning under uncertainty. However, designing the 
entire rule base of a Fuzzy rule base system (FRBS) by an expert is a boring and 
time consuming task and sometimes the performance of the designed Fuzzy 
system is far from the optimum, especially in cases that the available knowledge 
of the system is not enough. In this paper, a rule learning method based on the 
iterative rule learning (IRL) approach is proposed to generate the entire rule base 
of an FRBS with the help of genetic algorithms (GAs). The advantage of our 
proposed method compared to similar approaches in the literature is that our 
algorithm does not need any training set, which is difficult to collect in many 
cases; cases like most of the problems existing in the RoboCup soccer domain. As 
a test case, the goal-shooting problem in the RoboCup 3D soccer simulation 
league is chosen to be solved using this approach. Simulation tests reveal that with 
applying the rule learning method proposed in this paper on the goal-shooting 
problem, not only can a rule base with good performance in goal-shooting skill be 
obtained, but also the number of rules in the rule base can be decreased by using 
the general rules in constructing the rule base. 

1   Introduction 

Most of the problems in the RoboCup soccer domain suffer from the noisy 
perceptions, noisy actions, and continuous state space. To cope with these problems, 
the use of Fuzzy logic can be a good choice, due to its capabilities of inferring and 
approximate reasoning under uncertainty. 

However, in the traditional design of Fuzzy systems, an expert’s knowledge of the 
system is necessary. Due to such dependence, sometimes the performance of a Fuzzy 
system can be far from the optimum. To overcome these drawbacks, techniques such 
as neural networks (NNs), and evolutionary algorithms (EAs) are combined with 
Fuzzy logic to form hybrid-systems. To implement NN, lots of training data are 
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required which are difficult to collect in many cases. The adaptive capabilities, robust 
nature, and simple mechanics of EAs make them inviting tools for the development 
and optimization of Fuzzy rule base systems (FRBS) [1]. 

In this paper, we have proposed a new approach based on the iterative rule learning 
(IRL) method, to learn the entire Fuzzy rule base of an FRBS, which can be used for 
solving most of the problems in the RoboCup soccer simulation domain. In the 
original IRL method, a training set is needed for the algorithm. This training set 
should contain the correct examples, and in most cases, it should be complete enough 
to cover entire input space of the problem. However, obtaining such a complete 
training set is very difficult for some problems, because this needs supervision of an 
expert and this is not always possible. In our proposed approach, the entire Fuzzy rule 
base can be learned without needing any training set.  

We chose the goal-shooting problem in the RoboCup 3D soccer simulation league 
as a test case to prove our proposed approach. We will show how the entire Fuzzy 
rule base for solving the goal-shooting problem can be generated automatically by 
using our proposed approach.  

The remainder of this paper is organized as follows. Section 2 presents a quick 
overview of Genetic Fuzzy systems (GFS) and compares the different approaches in 
the literature. Section 3 describes the proposed approach for learning the Fuzzy rule 
base and how the Fuzzy rule base can be encoded into the chromosomes, as well as 
how the fitness value of chromosomes can be calculated. Section 4 introduces the 
goal-shooting problem in the RoboCup 3D soccer simulation league, and describes 
how the proposed algorithm is applied for this problem. Section 5 details the results of 
our training experiments. Conclusions and future works are summarized in Section 6. 

2   Genetic Fuzzy Systems 

This section describes a brief overview of Genetic Fuzzy Systems (GFSs) (Section 2.1). 
It also compares the different approaches of rule learning in the literature and explains 
their advantages and disadvantages (Section 2.2).  

2.1   Overview of Genetic Fuzzy Systems 

The general name of Genetic Fuzzy Systems (GFSs) refers to the systems that use the 
GAs for designing Fuzzy systems [2]. The most prominent types of GFSs are genetic 
Fuzzy rule-based systems (GFRBSs), whose genetic process learn or tune different 
components of a Fuzzy rule-based system (FRBS) [4]. Each FRBS usually consists of 
two different components.  

When considering a rule-based system and focusing on learning rules, there are 
three main approaches that have been applied in the literature: Pittsburgh, Michigan, 
and iterative rule learning [4].  In Section 2.2, a comparison between these three 
approaches is presented. 

2.2   Comparison between Rule Learning Approaches  

As stated in Section 2.1, three main approaches exist in the literature for learning 
rules of the rule base of an FRBS. In this section a comparison between these 
approaches is presented. 
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The Michigan approach is not appropriate for our problem, since it does not 
consider the cooperation between rules. This problem is referred to as the cooperation 
vs. competition problem (CCP) [5]. If we use the Pittsburgh approach, the search 
space for GA becomes very large. Thus the computational time and cost is too high to 
choose this approach for our problem. 

If we use the IRL approach, we do not have the above problems. However, in the 
original IRL approach, we need a training set that contains the correct examples. 
However, in some scenarios such as the most problems in the RoboCup soccer 
domain, obtaining such a training set is very difficult. Thus we changed the IRL 
approach, in order not to need any training set. In the next section, we will describe 
our proposed approach. 

3   Learning a Fuzzy Rule Base 

This section describes our proposed approach for learning the Fuzzy rule base of an 
FRBS (Section 3.1). It also describes how to encode the logic rules of a rule base 
(Section 3.2) and how the fitness value will be calculated for each chromosome in the 
population (Section 3.3).  Finally the termination condition  of  the  algorithm is 
explained (Section 3.4). 

3.1   Overview of the Approach 

Our proposal consists of a learning method based on the IRL approach in which the 
entire rule base is learned without needing any training set. The original IRL approach 
has the following steps: 

 

1. Use a GA to obtain a rule for the system. 
2. Incorporate the rule into the final set of rules. 
3. Penalize this rule. 
4. If the set of rules obtained is adequate to represent the examples in the 

training set, the system ends up returning the set of rules as the solution. 
Otherwise return to step 1. 

 

All steps of the above algorithm depend on a set of input-output data pairs about 
the problem being solved, and even in many cases this training data set should cover 
the universe of discourse of all the variables in the antecedent part of the rules. 
However, obtaining such a complete training data set is very difficult for some 
problems, such as those existing in the RoboCup soccer domain. Therefore, for such 
problems we need a different approach that does not depend on a training set. Here 
we propose a new algorithm based on the IRL approach to generate the rule base of 
an FRBS without needing any training set. Our algorithm has the following steps: 

 
1. Use a GA to obtain a rule for the system. 
2. Incorporate the rule into the final set of rules. 
3. Calculate the performance measure and completeness measure for the set of 

rules obtained. If these two measures are acceptable, the system ends up 
returning the set of rules as the solution. Otherwise return to step 1. 



 Evolutionary Design of a Fuzzy Rule Base for Solving the Goal-Shooting Problem 323 

The first two steps of the above algorithm are the same as the original IRL 
approach. However, the consistency criterion used in the first step of the algorithm is 
calculated independent of any training set. The consistency property of the final rule 
base is considered in the calculation of the fitness value for the chromosomes of the 
GA which were used in the first step of the algorithm. Fitness calculation is described 
in detail in Section 3.3. In step 3, a performance test is done to obtain the performance 
measure of the rules obtained in the final rule set so far. The completeness property of 
the rule base is checked through calculation of the completeness measure for the rules 
obtained in the final rule set. The performance and completeness measures will be 
described in detail in Section 3.4.  

3.2   Encoding Method for Logic Rules 

Suppose a Fuzzy rule base system with ܺ ൌ ሺݔଵ, , ଶݔ . . . ,  ሻ  as its inputs andݔ
ܻ ൌ ሺݕଵ, , ଶݕ . . . ,  ሺ݆ݔ ሻ  as its outputs. Each inputݕ ൌ 1, … , ݊ሻ has ݍሾ݆ሿ linguistic 
terms denoted as ܣଵ, ,ଶܣ … , ܣ

ሾሿ, and each output ݕ ሺ݆ ൌ 1, … ,݉ሻ has ݎሾ݆ሿ  
linguistic terms denoted as ܤଵ, ,ଶܤ … , ܤ

ሾሿ. ܸ is defined as a vector, elements of 
which are the Fuzzy sets corresponding to input ݔ , thus we can write: ܸ ൌ
ሺܣଵ, ,ଶܣ … , ܣ

ሾሿሻ. Similarly ܷ is defined as a vector, elements of which are the 
Fuzzy sets corresponding to output ݕ, thus we can write:  ܷ ൌ ሺܤଵ, ,ଶܤ … , ܤ

ሾሿሻ. A 
universal rule in a knowledge base has the form as  
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here, ሺ·ሻ is an integer function  mapping from ሼ1, 2, … , ݏሺ ݏ ൏ൌ ݊ሻሽ to 
ሼ1, 2, … , ݊ሽ satisfying ݔ  ് , ݕ  ሻݔሺ  ്  ሺ݆ሻ is an arbitrary subset ofܦ .ሻݕሺ 
ሼ1,2, … , ⊃ ሺ݆ሻܦ .ሺ݆ሻሿሽ (i.eሾݍ  ሼ1,2, … ,  ሺ݆ሻሿሽ), and ݇ሾ݆ሿ is an arbitraryሾݍ
number between 1 and ݎሾ݆ሿ. In principle, a rule base for the Fuzzy rule base can 
contain arbitrary rules in the form of (1).  

From (1), we can see that the premise of a Fuzzy rule is characterized by sets   
ሺ݅ሻܦ ؿ ሼ1, 2, … ,  ሺ݅ሻሿሽ. This fact suggests that a binary code be a suitableሾݍ
scheme for representing premises of such rules, as inclusion or exclusion of an 
integer in the sets ܦሺ݅ሻ can be declared binary. For input variable ݔ ሺ݆ ൌ 1,… , ݊ሻ  
with ݍሾ݆ሿ linguistic terms, a segment consisting of ݍሾ݆ሿ binary bits is required to 
encode the conditional composition for this variable. Every bit of the segment 
corresponds to a linguistic term with bit “1” for presence and bit “0” for absence 
of its Fuzzy set in forming the condition. For output variable ݕ ሺ݆  ൌ 1,… ,݉ሻ 
with ݎሾ݆ሿ linguistic terms, a segment consisting of ݎሾ݆ሿ  binary bits is required to 
encode a specific value for this variable. In contrary to the segments 
corresponding to the input variables, in the segments corresponding to the output 
variables, only one bit is allowed to be ‘1’ and all the other bits should be ‘0’; 
because exactly one specific linguistic value should be assigned to each output 
variable. Therefore, each chromosome consists of ܮ ሺܮ ൌ ∑ ሾ݆ሿݍ

ୀଵ   
  ∑ ሾ݆ሿݎ

ୀଵ  ሻ binary genes that construct a rule. 
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3.3   Fitness Calculation 

In the first step of our proposed algorithm, we use a GA to obtain a rule. Each GA 
needs a fitness function to evaluate the chromosomes. We have considered three 
factors in calculating the fitness value for a chromosome. The first factor is quality of 
the chromosome itself, i.e. the quality of the result of applying that rule in the 
environment. The quality measure is problem dependent and should be defined for 
each problem separately. The second factor is generality measure of a rule. The 
generality measure of a rule is equal to the size of the input space covered in the 
premise of a rule. The more general rules are used, the fewer number of rules is 
needed in the final rule base. The third factor is consistency measure of a rule with the 
rules inside the final rule base. The consistency measure of a rule is calculated as 
follows. 

A conflict occurs in the rule base if there exist two rules which have overlapping 
input patterns but different linguistic consequences [3]. For example, suppose that 
rule R1 is defined as ‘if x1 is low and x2 is medium then y1 is low’, and rule R2 is 
defined as ‘if x1 is low then y1 is high’. In this case, there is a conflict between R1 and 
R2; because there is an overlapping area between the input spaces they cover, while 
their consequences are different. For each rule in the population, the conflicting scale 
( ) of that rule with each rule in the final rule base is calculated separately, and 
summed together to construct the conflicting amount ( ) of that rule. The conflicting 
scale between two rules is equal to the cardinality of intersection set between input 
spaces covered in their premises. Finally, we consider a measure to evaluate the 
consistency of a rule with the rules in the final rule base. In the case that there are no 
conflicts existing, the consistency measure reaches its maximum value of “1”. 
Otherwise it decreases linearly with the increment of conflicting amount, until its 
minimum value “0” is reached. The calculation of consistency measure ( ) is given in 
the following formula: 

 

                                                                  (2) 

 
where  denotes the decreasing rate of . The value of  should be 
determined in terms of particular problems to be solved. 

Therefore, the final formula for calculating the fitness value of a chromosome 
(rule) in the population has the following form: 

 

                       (3) 

where  are parameters for scaling each factor, and should be determined in 
terms of particular problems to be solved. 

3.4   Termination Condition 

In the third step of our proposed algorithm, a termination condition is needed. We 
consider two criteria in the termination condition: The performance measure and the  
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completeness measure. The performance measure is calculated through running a 
performance test. The performance test is a domain-dependent test, and the obtained 
final rule base after each iteration of the algorithm should be tested in the problem 
environment. The second criterion, i.e. the completeness measure is equal to the size 
of input space covered in the premises of the rules in the final rule base, divided by 
the size of total input space of the problem to be solved. Either of these two measures 
or the combination of them can be used for the termination condition of the algorithm. 
Also a maximum number of iterations can be considered to terminate the algorithm, if 
the number of iterations exceeds this value. 

4   Learning the Rule Base for Goal-Shooting Problem 

We chose the goal-shooting problem in the Robocop 3D soccer simulation league as a 
test case to prove our proposed approach. The goal-shooting is an essential skill of 
any successful team in the RoboCup 3D soccer simulation league. Since the goalie 
has the ability to catch the ball and also the height of the goal is rather short, the goal-
shooting problem has been turned to a difficult and important problem in this league. 
Using our proposed approach, we will show how the entire Fuzzy rule base of the 
goal-shooting problem can be generated automatically. The input variables for this 
problem are as follows: 

(1) BallGoalAngle: This variable is calculated as follows: 
 

              (4) 

where BallY and BallX are the coordinates of the ball, and, GoalY and GoalX 
are the coordinates of the goal center. 

(2) BallGoalDistance:  This is the distance between the current position of the 
ball and center of the goal. 

(3) GoalieY: This is the y-coordinate of the goalie. 
(4) GoalieX: This is the distance between goalie and the goal line in the -axis. 

 
The output variables of this problem are as follows: 

(1)  ShootPower: This is the power with which a player can shoot the ball. The 
power is between 0 and 100. 

(2) ShootAngle:  This is the latitude angle for a shoot which is between 0 and 50. 
(3) ShootPoint:  This is the y-coordinate of the target point in the goal. This is 

between –  and , where goal_with is the width of the goal. 
 

In order to apply our approach to this problem, the linguistic terms for input and 
output variables should be defined first. The linguistic terms and membership 
functions for input variables and output variables of this problem are depicted in 
Figure 1 and Figure 2 respectively.  
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Fig. 1. Membership functions for the input variables of the goal-shooting problem 

 

Fig. 2. Membership functions for the output variables of the goal-shooting problem 

 
To apply our approach to the goal-shooting problem, we also need to define the 

fitness function for the GA used in the first step of the rule learning algorithm. As stated 
in Section 3.3, the fitness function consists of three parts. The only part we need to 
define here is the quality measure. The other two parts of the fitness function are general 
and don’t depend on a specific problem, so we can use the general definition in Section 
3.3 to calculate their value. To calculate the quality measure of a rule, we consider the 
set of conditions that this rule covers in its premise part. If the number of conditions this 
rule covers is more than MaxEvaluation, we pick only MaxEvaluation conditions 
randomly from them. These conditions constitute a condition set. We set the 
MaxEvaluation parameter equal to 10 in our experiments. This parameter is just for 
preventing the algorithm from taking very long time to run. Then for each condition in 
the condition set obtained in the previous step, we should create the situation described 
by the condition of that rule. This is accomplished by placing the ball, attacker-player, 
and goalie at the corresponding locations and allowing the attacker-player to shoot the 
ball towards the goal according to the parameters determined by the output variables of 
that rule. Then the quality measure of a rule is calculated as: 

 

                      ,                               (5) 
 

where Scores is the total number of shoots that led to a score. Total_Shoots, is the total 
number of shoots towards the goal.  is defined as the difference between y-coordinate of 
the ShootPoint and the y-coordinate of the goalie at the moment when the attacker-player 
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kicks the ball. A bigger  means a higher chance to score a goal.  and  are two scaling 
parameters that in this problem are heuristically set to 100 and 10 respectively. 

5   Experiments and Results 

Several tests have been carried out to show the impact of changing the parameters of 
the algorithm in the result. In our experiments we set the GA parameters which were 
used in the first step of the algorithm as described below.  

The population size is fixed to 20 chromosomes. Stochastic universal sampling with 
elitism selection is adopted. One elite chromosome is reserved in each generation. The 
crossover operator is the uniform crossover with the probability of =0.6. The mutation 
is applied to each gene of a chromosome independently with probability of =0.05. 
The maximum number of generations of GA to obtain a rule is fixed to 30. 

In every iteration of the algorithm, a GA runs and the best rule obtained is added to 
the final rule base. In step 3 of the algorithm, a performance test is carried out to 
evaluate the performance of the final rule base obtained so far. To carry out the 
performance test, 30 random situations will be created in the simulation and the 
attacker-player is allowed to shoot the ball towards the goal. The goalie used for our 
experiments is the goalie of Caspian team used in the RoboCup 2006 competitions in 
Bremen. The performance measure is calculated as the number of shoots that led to a 
score divided by the total number of shoots (i.e. 30 in our experiments). The 
performance measure is considered as the termination condition of the rule learning 
algorithm. If the performance measure of the final rule base becomes greater than a 
parameter named  the algorithm terminates, otherwise the algorithm 
goes back to step 1. Figure 3 plots the curve of performance measure of the final rule 
base with respect to the number of iterations required to reach a rule base with that 
performance measure. The curve is the average of 10 independent runs of the algorithm. 
Note that in Figure 3, the iteration number is equal to the number of rules in the final 
rule set in that iteration, because in each iteration of the algorithm, exactly one rule is 
added to the final rule set. Figure 3 shows that if bigger values are assigned to , more 
iterations will be needed to terminate the algorithm and also more rules will be obtained 
in the final rule set. So, the more accuracy and performance is needed for a system, the 
larger rule base is obtained, and also more time is needed to reach the solution. 

 

Fig. 3. Curve of performance measure of the final rule base with respect to the number of iterations 
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6   Conclusion and Future Work 

In this paper a rule learning method was proposed to learn the entire rule base of an 
FRBS without needing any training set. Also a generality metric was introduced in the 
algorithm that can lead to a compact rule base with less number of rules. Such an 
FRBS can be used to solve a broad range of problems. Specially most of the problems 
in the RoboCup soccer simulation domain can be solved in this way. As a test case, 
the goal-shooting problem in the RoboCup 3D soccer simulation league was chosen 
and solved by applying this approach. A big advantage of this approach is using 
Fuzzy logic and generating a Fuzzy rule base that is expressive enough and easy to 
understand by a human. 

In the proposed approach, membership functions should be defined by an expert. 
Although the most difficult part of designing an FRBS for dynamic and complicated 
systems is defining the rule base, the membership functions can play important roles 
in the performance of the system. We are planning to embed the tuning of 
membership functions in the algorithm, so as to an expert does not have to define 
them explicitly. 
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Behavioral Cloning for Simulator Validation
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Abstract. Behavioral cloning is an established technique for creating
agent behaviors by replicating patterns of behavior observed in humans
or other agents. For pragmatic reasons, behavioral cloning has usually
been implemented and tested in simulation environments using a single
nonexpert subject. In this paper, we capture behaviors for a team of sub-
ject matter experts engaged in real competition (a soccer tournament)
rather than participating in a study. From this data set, we create soft-
ware agents that clone the observed human tactics. We place the agents
in a simulation to determine whether increased behavioral realism re-
sults in higher performance within the simulation and argue that the
transferability of real-world tactics is an important metric for simulator
validation. Other applications for validated agents include automated
agent behavior, factor analysis for team performance, and evaluation of
real team tactics in hypothetical scenarios such as fantasy tournaments.

1 Introduction

Accurate simulation of physical environments and human behavior is important
for applications including training [9] and system design concept exploration [3].
However, specific metrics are required for otherwise vague notions of “accuracy”
and “realism.” For training tactics, a key aspect of accurate simulation is the
transferability of tactics between real and simulated environments. If correct tac-
tics are counter-effective in the simulation, students may learn incorrect tactics
that work only in the simulator (negative training). We propose a metric for the
transferability of tactics: the correlation between agent behavioral realism and
agent performance in the simulation.

This approach requires creating software agents with realistic expert behav-
iors, a task that is often difficult. Domain experts are often unavailable for in-
tensive consulting or are not trained to engineer automated systems. Therefore,
domain-specific software is often created by researchers and engineers with only
second-hand knowledge of the domain.

Behavioral cloning is one technique to address the challenge of creating
agents. Instead of attempting to explain what they know, experts simply per-
form the task. The performance is recorded, and machine learning algorithms
are used to create a model which is used to produce agent behaviors. This paper
describes our implementation of behavioral cloning for soccer play and explores
the correlation between human model fidelity and performance in the RoboCup
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soccer simulator. We find a significant correlation, proving that (1) the aspects
of behavior captured by the model are significant, (2) the human team employed
effective tactics, and (3) real-world tactics are effective within the simulation.

2 Related Work

The goal of software validation is to test completed software for compliance
with its specifications. Gledhill and Illgen [6] present a survey of techniques for
verification and validation of tactics simulators. For example, trace validation
is a manual inspection of program state throughout the execution of a test
scenario. The techniques are quite general and apply to software for almost any
application. Our work focuses on a more specific criterion – tactics validation –
that is necessary for tactical trainers.

Behavioral cloning [2] is an established technique for building agent behav-
iors. A person is observed performing a task and their actions are recorded. A
computer model is created to capture patterns of behavior from these observa-
tions. The model is then used to control a software agent. Behavioral cloning
has been successfully applied in simulations of tasks such as piloting an airplane
and operating a crane [10]. Aler, Garcia, and Valls [1] used behavioral cloning
in RoboCup to model data collected from a modified version of the simulator
that allows a human to play RoboCup as an interactive computer game. How-
ever, the captured behavior was a single user manipulating a simulation through
computer input devices, rather than a team of soccer players competing in a real
match.

For pragmatic reasons, most behavioral cloning research has focused on non-
expert subjects (often the researchers themselves) in a computer simulation. Be-
cause we are interested in validating simulators against reality, our observations
must come from the real world.

3 A Model-Driven Simulated Soccer Team

In selecting an aspect of soccer play for behavior modeling, we considered two cri-
teria: observability (which excludes mental skills such as situational awareness)
and transferability from the simulation to reality (which excludes low-level skills
such as trapping the ball). We decided to focus on team positioning dynamics.

For low-level skills, our team adopted the UvA Trilearn [7] software library.
It is effective, well documented, and open source. We manually implemented a
simple kick strategy (including passing, dribbling, and shooting) for our team.
Modeling these aspects of play is left for future research.

3.1 A Data Set of Human Soccer Play

Our research needed a data set of skilled human soccer play. Creating the data
set required both source material (recorded soccer play) and a tool to extract
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data from the source material. Televised soccer footage fails to capture team
positioning dynamics because it focuses on the ball, so we recorded games at
the University of New Mexico soccer pitch. A single video camera was unable
to record the entire field with adequate resolution, so we used an array of four
cameras along the top row of bleachers overlooking the field 1.

Fig. 1. A screenshot from the motion capture application. The application shows an
overhead view synthesized from four cameras. Rings and trails indicate the players’
current and recent positions.

Our data extraction tool is a multiple target tracking application that fuses
the four viewpoints, detects players using background subtraction [5], and tracks
players using Joint Probability Data Association [8] with Kalman Filtering.

The resulting dataset consists of a sequence of observations of the state of
the game. Each observation consists of the positions of all 22 players (11 per
team) and the ball at a sample rate of 10Hz. Other information (e.g., velocities
and distances) is derived from the sequence of positions.

3.2 Cloning Team Positioning Dynamics

We modeled team positioning dynamics using a function approximator to predict
the position of each human player given the current state of the environment
(e.g., the positions of players and the ball). We used nearest-neighbor matching,
which is a type of instance-based learning (IBL). In the soccer domain, each
instance is an observation of the state of the soccer game at a moment in time.
In our implementation, an observation is an associative array of named features.

Behavioral Cloning for Simulator Validation 331



Each feature may be multidimensional. Many of the features are two dimensional
because we used the 2d version of the RoboCup simulator.

3.3 Clustering and Model Context Set Size

The basic nearest-neighbor algorithm is highly susceptible to over-fitting. The
model will perform poorly in the regions of nonrepresentative instances. We
used clustering to prune the instance set by discarding redundant and non-
representative instances; only the cluster centers are retained. We refer to re-
tained instances as contexts.

The use of clustering adds a parameter (the number of contexts) to the model.
The impact of this parameter on predictive accuracy is measured in Section 4.
The number of contexts also determines the run-time memory and computation
requirements of the model, which is especially important for team-oriented tasks.

3.4 Distance Metric and Feature Selection

In a complex task such as soccer, a team will never encounter precisely the same
situation twice, so it is crucial to draw correct analogies between the current sit-
uation and relevant model contexts. Relevance is defined by a distance function.
Our implementation calculates the weighted Euclidean distance between obser-
vation vectors. The weight vector is a parameter to the system and must be
chosen to emphasize the features that most influence expert tactics. A weight of
0 causes the corresponding feature to be disregarded entirely. Feature selection
algorithms [4] could be used automate the selection of weights.

Feature selection is critical for IBL, which is intolerant of irrelevant at-
tributes. We obtained the best results for soccer field positioning with a small
set of carefully chosen features as described in Section 4.

3.5 Number of Training Observations

The success of behavioral cloning for tactics modeling is indicated by the sensi-
tivity of the model to varying amounts of training data. If varying the amount
of training data has no effect, then there is no transfer of human expertise to the
system, and the human model is worthless. If performance increases very slowly
with increasing amounts of training data, then gathering enough data to yield a
substantial performance improvement may be prohibitively labor intensive.

The feature set, number of model contexts, and amount of training data are
all interdependent parameters. For example, a larger amount of training data
contains more varied situations and behavior and may require more features
and contexts to model effectively.

4 Experiments in Behavioral Cloning for RoboCup

This section describes two experiments. The first measures the predictive accu-
racy of our player-positioning model on the human data set. The second measures
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the outcome of RoboCup matches when the model is used to control RoboCup
agents. These provide the information required to calculate the correlation be-
tween behavior modeling accuracy and agent performance in the simulation.

4.1 Predictive Accuracy of Human Player Model

The first experiment determined how prediction accuracy varies with increas-
ing amounts of training data. We produced a data set of human soccer play
by capturing the first 20 minutes of a soccer match between the University of
California Irvine Anteaters and the Western Illinois University Leathernecks at
the University of New Mexico Soccer Complex on September 21, 2003. This data
set is available at http://www.cs.unm.edu/∼rabbott/SoccerData

Results are reported for three feature sets: “Ball Position X” uses only the
component of ball position extending from one goal to the other; “Ball Position”
contains the 2-dimensional ball position; “Ball Position and Velocity” includes
both the ball’s position and estimated velocity. We experimented with larger
feature sets and more complex features (such as the density of opponents between
a player and the ball) but without significant improvement in the results.

We used 10-fold cross-validation to measure predictive accuracy. For each
fold, we measured the mean prediction error (the squared distance between pre-
dicted and observed player positions in holdout data) for every combination of
observation set size, context set size, and selected features.

4.2 Predictive Accuracy of Human Player Model - Results

Figure 2 shows how feature selection, observation set size, and context set size
influence prediction accuracy for the human soccer data set. These results show
that the x component of ball position is insufficient to accurately predict player
position. In contrast, the Ball Position and Ball Position and Velocity feature
sets achieve lower prediction error, with steadily improving results up to all
available observations (Figure 2(a)) and the maximum tested number of contexts
(Figure 2(b)). The inclusion of ball velocity yields an improvement that is very
small, but consistent across varying observation and context set sizes.

4.3 RoboCup Performance

All simulations have limited fidelity. Even a perfect model of ideal human behav-
ior on a task might not perform well in a simulation of the same task because of
differences between the model and the real world. We evaluated the performance
of our model-driven RoboCup team using the same parameterizations as in the
previous section. The opponent team is a behavior clone of the UvA Trilearn
RoboCup team [7]. Training data for this clone was generated by running several
simulation matches between two instances of the UvA Trilearn.

The performance metric is the goal difference PenaltyScore =Goalsopponent−
Goalsself during a five minute match. As with the error metric used in the pre-
vious section, a lower penalty score indicates better performance. (The penalty
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(a) Prediction error for each observation
set size.

(b) Prediction error for each context set
size.

Fig. 2. Summary of results from the prediction error parameter sweep

score reflects only the outcome of a match and is not related to penalties assessed
by a referee for violating the rules of soccer).

As before, we tested all combinations of three feature sets and nine values
each for the observation set and context set sizes. For each condition, we com-
puted the mean of 100 trials for a total of 24, 300 RoboCup matches.

4.4 RoboCup Performance - Results

(a) Penalty for each observation set size. (b) Penalty for each context set size.

Fig. 3. Summary of results from the RoboCup performance parameter sweep

The RoboCup performance for all conditions is summarized in Figure 3 .
The performance of Ball Position X is maximized with only 512 observations
(about 50s of play) and decreases with additional observations. With this simple
feature set, the model cannot adequately distinguish between different situations
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in soccer. For the other two feature sets, performance generally improves with
additional observations, and the maximum performance is achieved using both
ball position and velocity with all available observations.

The result of varying the context set size is quite different; for all three feature
sets, performance declines when more than 16 contexts are created (Figure 3(b)),
even as the human prediction accuracy continues to increase (Figure 2(b)). This
seems to indicate that clustering is an effective technique to prevent over-fitting
when using IBL.

Figure 4 displays the correlation between model prediction error on the hu-
man soccer dataset and the penalty score for a RoboCup team controlled by the
same model. This calculation is important because it tests the hypothesis that
real soccer strategy is effective within the RoboCup simulator. No significant
correlation is found for Ball Pos X (r = 0.07), perhaps because of the relatively
small range of prediction accuracy observed for this feature. However, a signifi-
cant correlation exists for Ball Position (r = 0.41) and Ball Position and Velocity
(r = 0.50). When all conditions are taken together, the overall correlation is 0.43.

Fig. 4. Correlation between model predictive accuracy on the human soccer dataset
and performance of a model-driven RoboCup team. Each data point represents a
model with a unique set of par ameter values . There are three point clouds, each
representing a different feature set.

5 Discussion and Conclusion

The correlation between human model fidelity and performance in the simulation
(r = 0.43) is significant, confirming the hypothesis that human soccer strategies
are effective within RoboCup. What factors account for this correlation and at
the same time prevent a stronger correlation? We propose three factors.
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First, the correlation between predictive accuracy and performance is limited
by the significance of the behaviors captured by the model. Our model captures
team field positioning strategy, but does not capture other important factors such
as pass selection and individual ball handling skill. In pedagogy, there is a risk of
focusing on unimportant knowledge and skills simply because, for example, they
are easy to explain or were important historically. The relative importance of
various skills could be studied by modeling each and then measuring the impact
of degrading one or more of the models.

Second, all humans (and human teams) are imperfect to varying degrees.
Emulating a team of novices should result in worse performance than emulating
a World Cup match. Thus, it may be possible to predict the outcome of a match
through a contest of behavior clones.

Third, all simulations fall short of perfect realism. Ideal RoboCup tactics
are distinct from ideal soccer tactics. This is a problem for training simulators
because students will be discouraged from practicing proven tactics if they are
ineffective in the simulator. Simulation developers should strive for a high cor-
relation between desirable behavior and positive scenario outcomes.

Creating tests to isolate these factors is an important topic for future re-
search. Such tests would allow instructors to re-target training, assess student
performance, or focus on increasing simulator fidelity. However, any significant
correlation between expert cloning accuracy and agent performance demon-
strates that the modeled behavior is significant, that the example behavior is
skilled, and that real-world tactics are transferable to the simulation.
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A Model-Based Approach to Calculating and
Calibrating the Odometry for Quadruped Robots�
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Abstract. This paper presents a model-based odometry calculation and calibra-
tion method (MBO) for quadruped robots. Instead of establishing the direct re-
lation between target and actual speeds as previous methods did, MBO sets up a
“parametric physical model” incorporating various properties of the robot and en-
vironment such as friction and inertia, through optimization with locomotor data.
Based on this optimized model, one can compute the loci of robot legs’ move-
ment by forward kinematics and finally obtain odometric readings by analyzing
the loci. Experiments on Sony AIBO ERS-7 robots demonstrate that the odom-
etry error of MBO is generally 50% less than the existing methods. In addition,
the calibration complexity is low.

1 Introduction

Odometry is very important for an autonomous robot[1,2,3,9], especially for the pur-
pose of determining the robot’s locomotory parameters (e.g., speed, position, orien-
tation.) between fixes which are rare or cost demanding. It is relatively simple for a
wheeled robot to calculate its odometry. The vehicle’s o�set from a known starting
position can be computed with the data of encoders which monitor the wheels’ revo-
lutions and�or steering angles. Odometry calibration for wheeled robots often involves
determining the values of kinematic parameters [2,9] or calibrating error model [3].
However, these methods cannot be implemented directly on legged robots, which have
completely di�erent mode of locomotion.

Two common motivations behind the current investigation into the odometry of
legged robots are: (1) the odometry should be accurate and powerful enough with re-
spect to the needs of real-world applications; (2) the odometry calibration should be
as simple as possible. There is some work on meeting these two requirements jointly.
Thomas Röfer [11] reports on a method for calculating odometry based on propriocep-
tion. German Team optimizes the parameters [5] of their walking engine [4] to make
the actual walking speed as close as possible to that specified by the corresponding
walk request. The rUNSWift team establishes the relation between raw walk command
values and the corresponding actual speed values through polynomial curve fitting [6].
Lin and his colleagues propose calculating odometry for a hexapod robot from its body
pose based on the kinematic configuration of its legs [7]. Stronger and Stone put forth
a method for simultaneous calibration of action and sensor models autonomously [10].

� This work is supported by the NSFC 60275024 and the 973 program 2003CB317000.
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All the previous work can be divided into two categories: one is to directly establish
a mapping between the target and actual speeds – we call this “direct calibration”. The
other is mainly based on proprioception, we call this “indirect calibration”. With the
“direct” method try to establish a mapping from one space (target speeds) to another
space (actual speeds), one has to calibrate lots of points of the space, and another dis-
advantage is the mapping lack the information of the process of state changing from
one point to a another point. The “indirect” method uses the information of sensors,
and generates the continuous proprioceptive state, so as to avoid the negative aspects of
“direct” methods.

Based on previous work, we propose in this paper a new odometry calculation and
calibration method for quadruped robots, named MBO (m

¯
odel-b

¯
ased o

¯
dometry), that is

the first “indirect calibration” based on a “parametric physical model” for quadruped
robots. Instead of establishing the direct relation, MBO sets up a “parametric physi-
cal model” incorporating both geometrical and physical properties of the robot such
as friction and inertia through optimization of a parameterized version of the “trian-
gle model” proposed in [8] with the locomotor data of the robot. Based on this model,
MBO can figure out the loci of leg movement with forward kinematics and finally ob-
tain the odometric readings by analyzing loci. Since it is straightforward to calculate the
acceleration�deceleration of the robot’s movements at runtime, MBO provides a “finer-
granularity” odometry for quadruped robots. In addition, the calibration complexity is
rather low—only twelve walking samples are needed for optimization of the parametric
physical model, although MBO runs semi autonomously at the current stage. We imple-
mented MBO and carried out experiments on AIBO ERS-7. The results show that the
accuracy of the odometry calculated by MBO is markedly higher than that by previous
methods.

The remainder of this paper is organized as follows: Section 2 describes briefly the
principle of MBO. Section 3 explains calibration of the parametric physical model on
the AIBO platform. Section 4 discusses how to calculate odometry from loci. Section 5
presents the experimental results and the paper is concluded in Section 6.

2 The Principle

Consider a walking engine that responds to any walking request by arranging the legs’
movements according to some preset gait loci. If the robot is driven by motors, the
robot’s architecture usually allows each joint to receive a request every tu time and re-
turns feedback on its corresponding angles at the same frequency. According to a given
leg model, the paw positions can be calculated by forward kinematics using the joint
angles fed back by joint sensors. Moreover, a calculated locus can be simply acquired
by connecting the consecutive paw positions generated from the angles.

If a robot is held in the air while walking, its paw locus looks like the curve shown in
Fig.1. The solid line from s to e in Fig.1 presents the trajectory of support phase of a leg.
If the leg keeps in contact with the ground and has no paw slippage during the support
phase, the movement of the robot is fully determined by the locus of the support phase.
Therefore, the problem of odometry calculating is reduced into that of calculating the
actual loci of legs.
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Fig. 1. One walk cycle of sam-
pled leg locus. The sample interval
tu�8ms. The leg is in contact with
the ground at point s, and raised in
the air at point e.

Specifically, the displacement of one walk cycle
is determined by the corresponding trajectory on the
x � y plane. Suppose a leg makes contact with the
ground at point s and is raised in the air at point
e,their projected projective points on the x � y plane
is marked as Ps and Pe respectively (Fig.1). The dis-
placement S of this walk cycle can be computed by
setting S � Ps � Pe. It follows under the assumption
of no obstruction that the displacement of one walk
cycle only concerns the point where the leg is placed
onto the ground and the point where the leg is raised.
Therefore,the error caused by discrete feedback of
joint sensors is limited and can occur only within a
few cycles of feedback when the leg is placed on or
raised from the ground.

The assumption of no slippage is problematic for real-world applications. Generally,
odometry for legged robots is error-prone due to the noises and�or uncertainty inherent
in the robots, their motion and even their environments. In order to simplify the mod-
eling, one usually neglects physical properties such as friction, weight of the robot and
its components, inertia, motor strengths, causing impaired performance in real-world
applications [4]. As a remedy to this problem, we try to model these factors including
both geometrical and physical properties as nuch as possible. We take a parameter-
ized version of “triangle model” [8] as the starting point for our “parametric physical
model” (see Fig. 2) and optimize it with the locomotor data of the robot’s movements
in the application environment by using a genetic algorithm. The expressive power and
the adaptability of this model primarily stems from the variance of the parameters. For
example, the length of some parts of the leg would be reduced by the genetic algorithm
when the robot walks on a slipperier carpet. Due to this adaptability of the parametric
physical model, MBO can provide more accurate odometric readings, as our experi-
ments demonstrate.

3 Model Setup

There are two steps in MBO to set up a parametric physical model: (1) setting an tempo-
rary profile of the parameterized triangle model; (2) obtaining the final model through
optimization. This section describes the detailed method on the sony AIBO robotics
platform.

3.1 Parameterized Triangle Model

The AIBO robot has four legs. Each leg has three joints known as the rotator, abductor,
and knee. The most widely used model is the triangle model described in [8], in which
the lengths and widths of the legs are both considered. The model is simple and conve-
nient to use. MBO uses the triangle model as the basis,but parameterizes it (Fig.2).

The following parameters describe in a related coordinate system whose origin is
the position of joint rotator: 1). position correction of joint rotators six parameters.



340 H. He and X. Chen

2). length of fore and hind upper legs, L1 in Fig.2 two parameters. 3). width of fore and
hind upper legs, L3 in Fig.2 two parameters. 4). length of fore and hind upper legs, L1
in Fig.2 two parameters. 5). the rotation angle correction of joint knee,� in Fig.2. 6). the
zero correction of joint rotator, abductor and knee, three parameters.

The paw position P(x� y� z) can be determined using following transformations, writ-
ten in matrix: �
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where (�x� �y� �z� �1)T denotes the position correction of leg joint rotator,�R the rota-
tion angle correction of the joint knee.

Fig. 2. The triangle leg model of AIBOs. Point O is the joint rotator position. Point P is the paw
position.

3.2 Model Optimization

A position can be determined by a given sequence of all leg joints data and a given leg
model. However, the calculated position is not close suÆciently to the actual position if
the calculation is based on a pure leg model, because there are too many factors a�ect-
ing the accuracy, (as described in Sect.2). Therefore, MBO optimizes the initial model
described above with the locomotor data of the robot’s movements in the application
environment. For this purpose, the model is re-described by a set of parameters, denoted
Mi(pi1� pi2� � � � � pin). Thus model optimization is reduced to a search of the best set of
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parameters in an n-dimensional space. A basic genetic algorithm is implemented here
for the optimization. It first computes the displacement S i with a given model Mi and
a given sequence of consecutive joints data D according to formula (3) and determines
the fitness of a model Mi according to formula (4):

S i � F(Mi� D) (3)

fi � �

�
���������

1 0 0
0 1 0
0 0 10

�
���������
� (S o

i � S i)�
T
� �

�
���������

1 0 0
0 1 0
0 0 10

�
���������
� (S o

i � S i)� � � (4)

where� denotes the variance between the displacements of fore legs and hind legs. The
method of analyzing odometry readings from loci is used here and will be described in
Sect. 4.

4 Odometry Calculation

The purpose of MBO is to obtain the odometric readings for the robot through calcu-
lating its paw loci by forward kinematics based on the optimized physical model. The
robot’s movement is completely determined by the movement of its support legs. From
the loci of all legs, one can deduce the support legs and swing legs and calculate the
odometric readings for the robot.

The detailed method of odometry calculation depends on the robot and its walking
type. In this paper, we assume that the quadruped robot uses the trot gait which lifts the
two diagonally opposite legs alternately [8].

Support Legs Calculation. A pair of diagonal legs are in contact with the ground as
support legs and the other two legs swing in the air at any given time. Even though the
robot may not have static balance and a third leg may fall on the ground, the e�ect of the
third leg is ignored here for sake of simplicity. The two diagonal legs whose positions
are lower are taken as the support ones.One plane can be determined by three arbitrarily
chosen legs, the remaining leg is below or above the plane. If the remaining is under the
plane, the supports legs are the diagonal legs which are composed by it and otherwise
are the other pair.

Translation and Rotation Calculation. A robot walks by lifting the two pairs of diag-
onally opposite legs alternately. Each pair of diagonal legs swing in the air for a moment
and then stay touching ground . The translation of the robot is calculated according to
the movement of the legs that are touching the ground. Let Rtrans and Rrot denote the
translation and rotation of the robot, respectively; ftrans and htrans denote the displace-
ment of fore and hind support leg, respectively; P f (t) and Ph(t) projective points on x�y
plane of the fore and hind support leg’s paw position at time t.

The translation is computed by following rules:i. if support legs do not change from
time t � 1 to time t, then, ftrans � P f (t � 1) � P f (t), htrans � Ph(t � 1) � Ph(t), Rtrans �

( ftrans�htrans)�2. ii. if support legs have changed form time t�1 to time t,then Rtrans � 0.
The rotation is computed by following rules: i. if support legs do not change from

time t � 1 to time t, then set vector l � P f (t � 1) � Ph(t � 1) ,vector c � P f (t) � Ph(t).
The rotation of robot is equal to the angle between vector l and vector c. ii. if support
legs have changed form time t � 1 to time t, then Rrot � 0.
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5 Experiments

The experimental platform is the sony AIBO-ERS7.The parametric physical model is
optimized using 12 samples in Table 1.

Table 1. Training samples for setting up the parametric physical model in the experiments

walk type Ci(x� y� �) of samples,Ti � 5s number of sample

forward �(200� 0� 0)� (300� 0� 0)� 4
backward �(�250� 0� 0)� 2
sidewalk �(0� 200� 0)� 2
rotation �(0� 0� 130)� (0� 0� 180)� 4

These experiments are to compare the accuracy of MBO with that of German Team
2004.Both odometric readings returned by German Team 2004 and MBO are recorded
and the actual displacement of the robot is measured manually. Equation (6) in Sect.3
is adopted here to evaluate the errors.We use a external camera to capture the position
and orientation of the robot. The average error of position and orientation are �

¯
2cm and

�
¯
5 degree.

Experiment 1. First, we test the errors caused by executing a single instruction each
time, with each of these instructions sampled twice or thrice. The experiment results
are shown in Table 2, which show that the odometrical readings returned by MBO are
always closer to the measurements and is robust to the di�erent actions.

Table 2. Results of experiment 1

instruction
(C,T)

measured
displacement

displacement
of GT04

displacement
of MBO

error rate
of MBO

rate proportion
(MBO�GT04)

�(300,0,0),6000� (2050,90,5)
(2060,200,10)

(1850,0,0)
(1850,0,0)

(2046,-58,-2.7)
(2040,67,0.4)

0.08
0.08

0.74
0.53

�(300,0,60),6000� (110,80,415)
(-80,100,420)

(21,0,364)
(21,0,364)

(129,72,414.2)
(91,92,412.6)

0.005
0.04

0.04
0.32

�(-250,0,0),6000� (-1050,-40,0)
(-1080,0,-10)

(-1500,0,0)
(-1500,0,0)

(-1198,-45,-0.7)
(-1180,-52,-5.9)

0.14
0.11

0.32
0.27

�(0,200,0),4000� (0,870,10)
(-50,860,7)

(0,811,0)
(0,811,0)

(-45,850,3.5)
(-62,833,12.5)

0.09
0.07

0.70
0.63

�(0,0,130),4000� (-40,80,470)
(10,10,475)
(-10,15,445)

(0,0,524)
(0,0,524)
(0,0,511)

(2,12,475.2)
(-37,-1,441)
(-30,3,443)

0.02
0.07
0.007

0.18
0.76
0.05

Experiment 2. Let the robot start at point (0,0,0), perform one of the following se-
quences of instructions, and then stop:�1���(150,0,0),500�, �(200,0,0),500�, �(250,0,0),
500�, �(300,0,0),500��;�2���(300,0,0),1000�, �(250,0,0),500�, �(200,0,0),500�, �(150,0,
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0),500��; �3���(0,0,100),500�, �(0,0,130),500�, �(0,0,160),500�, �(0,0,190),500��; �4�

��(0,0,200),1000�, �(0,0,170),500�, �(0,0,140),500�, �(0,0,110),500��; �5���(200,0,0),
2000�, �(200,0,60),2000�, �(200,0,0),2000�, �(200,0,-60),2000��.
�1is an accelerating process in x-axis direction and �2 a decelerating process after a

sudden start . �3 and �4 are similar to �1 and �2 , respectively, but in � direction. The
results (Table 3) show that MBO is more accurate than German Team 2004 except in
the case �4, where both methods are equally good. It is worth noting that odometrical
readings returned by MBO for rotation is much better. �5 is used to test the odometry
accuracy when the robot moves along a curve and MBO is also better in this case.
Moreover, the actual trajectory caused by �5 is approximated by fitting a smooth curve
over several manually measured points that the robot passes, as shown in Fig. 3. The
shape of the trajectory generated by MBO is much closer to the actual one than that
generates by German Team 2004. To sum up, the accuracy of MBO improves by at
least 50% in most cases.

Table 3. Results of experiment 2

Order Measured GT04 MBO MBO
�GT04

�1 (2050,90,5) (450,0,0) (612,-17,-1.3) 0.43
�2 (675,30,3) (600,0,0) (670,47,2.2) 0.48
�3 (-10,-5,-6) (0,0,290) (-10,-2,-13.1) 0.02
�4 (-15,20,60) (0,0,50) (-12,8,50.1) 0.99
�5 (130,760,0) (529,919,0) (141,959,8.0) 0.46

Fig. 3. The trajectories of �5

6 Conclusions

The original notion of odometry calculation for quadruped robots basically concerns
the relation between the output (the odometric readings) and the input (the actual mo-
tion data) of a movement. As far as we know, all previous methods of the odometry
calculation for quadruped robots are technically based on this notion in the sense that
some direct relations between the target and actual speed are established and employed
to tell the odometric readings. An alternative approach is proposed in this paper. In-
stead of establishing the direct relation, MBO sets up a “parametric physical model”
incorporating various properties of the robot and even the environment such as friction
and inertia. Based on this model, MBO deduces the loci of leg movements by forward
kinematics and obtains the odometric readings by analyzing loci in execution time.

We described the major steps and tested the performance of this method on the AIBO
platform with a generally applicable methodology. MBO fits the quadruped robot whose
swing phase occupies not greater than 50% of its whole gait trajectory. The experiments
showed the calibration complexity is as low as only twelve samples, covering 4 basic
motions—straight forward, straight backward, pure sideways walking, and pure rota-
tion. The error is 50% less than existing methods and the error rate is below 8% for
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most motion types. MBO does not demand additional sensors, and it only employs the
feedback of the leg joint sensors while returning odometric readings online. Another
feature of MBO is that the instantaneous speed of the robot o�ered by MBO is very
sensitive with steadily lower error. This would provide a new opportunity for more pre-
cise motion control of legged robots[7].

For that purpose, we need to work further on the prediction based on the odometry.
In addition, achieving the fully autonomous odometry calibration is a most important
future work. This implies that we need some on-line and on-board optimization methods.
Another interesting problem concerns the choice of types and number of training samples
for building an optimal “parametric physical model”, especially when “mixed motions”
(e.g., moving forward and sideways at the same time [5]) are considered more thoroughly.
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Abstract. One of the most important characteristics of intelligent ac-
tivity is the ability to change behaviour according to many forms of
feedback. Through learning an agent can interact with its environment
to improve its performance over time. However, most of the techniques
known that involves learning are time expensive, i.e., once the agent
is supposed to learn over time by experimentation, the task has to be
executed many times. Hence, high fidelity simulators can save a lot of
time. In this context, this paper describes the framework designed to al-
low a team of real RoboNova-I humanoids robots to be simulated under
USARSim environment. Details about the complete process of modeling
and programming the robot are given, as well as the learning method-
ology proposed to improve robot’s performance. Due to the use of a
high fidelity model, the learning algorithms can be widely explored in
simulation before adapted to real robots.

1 Introduction

In recent years, there has been much discussion concerning how knowledge can
be acquired and used by autonomous agents. Through learning an agent can
interact with an unknown environment and improve its performance over time
by focusing its sensors on parts of the environment that are relevant to the task
at hand.

In this scenario, the RoboCupR© has created in the last years a set of realistic
and simulated leagues to stimulate developments in the robotic field. One of these
leagues is the Humanoid League, where autonomous mobile robots with a human-
like appearance play soccer against each other. Humanoid League rules follow
FIFA soccer laws in general lines. However, currently, some simplifications are
assumed. Differently from conventional soccer, for example, each team consists
of two players, in which one can be designated as a goalkeeper.

Another recently created league is the RoboCup Rescue Simulation Virtual
Robots, in which a team of heterogeneous robots is asked to look for victims in

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 345–352, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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a urban search and rescue (USAR) task. This category also aims to fill the gap
between real and simulated environments by using a high fidelity simulator, the
USARSim [1], recently extended by the work of Zaratti et al. [2] to work with
legged robots. It is also an important research tool for studies of learning, Human
Robot Interaction (HRI) and multi-robot coordination, given the possibility of
simulating commercial and self-developed robot platforms.

Recently, some simulated models of real legged robots have been proposed.
The Sony Aibo and Sony QRIO [2] are some of these models. One of the main
constraints for using these robots as the basis for researching learning relies
in the fact that they are no longer commercially available. In fact, there is
a commercial platform that has been modelled for USARSim, Robovie-M [3].
However, its model is not yet fully available.

This paper presents the details about the complete process of modeling and
programming the commercially available version of Robonova-I humanoid robot,
as well as the learning methodology proposed to improve its performance on the
Humanoid league task. The rest of this paper is structured as follows. Section
2 explains the main characteristics of autonomous Learning. Section 3 presents
the proposed approach for building the robot model, describing, in details, the
complete high fidelity geometric model of the robot and the set of script files
needed to configure this model in the USARSim RoboCup simulator. The learn-
ing framework is presented in Section 4. Finally, Section 5 summarizes with the
main conclusions and presents some lines for further work.

2 Learning

Reinforcement Learning (RL) [4] is a class that lies between the extremes of
supervised learning, where the policy is taught by an expert, and unsupervised
learning, where there is no evaluative feedback. It is a technique that allows an
agent to adapt to its environment through the development of an action policy,
which determines the action that should be taken in each environmental state
in order to maximize (or minimize) a function over a cumulative reinforcement.
The reinforcement is a real value that defines the desirability of a state and can
be expressed both in terms of rewards or punishments. In RL systems, the a
priori domain knowledge incorporated by the designer is minimal and is mostly
encapsulated in the reinforcement function.

Q-learning [5] is the preferred RL algorithm because it provides good exper-
imental results in terms of learning speed and it is a model-free learning for
optimal policies. It learns the values of all actions in all states, rather than only
representing the policy.

3 Proposed Approach

The use of Learning, more specifically RL, is wide spread on RoboCup. In the
development of the simulated robots’ plan, DAMAS Rescue team used Jack
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Intelligent Agent programming language [6], decision tree algorithms and rein-
forcement learning [7]. Moreover, F180 champions CMUDragons are known to
use RL techniques. Furthermore, Soccer Simulation 3D champion FC-Portugal
can be cited as another successful example [8].

However, most of the techniques known that involves RL are time expensive,
i.e., it takes time to find a policy to successfully accomplish the proposed task
and difficult to configure. In these cases, as the agent is supposed to learn over
time by experimentation, the task has to be executed many times. Hence, high
fidelity simulators can save a lot of time.

In our case, the study of real robots in a simulated environment only makes
sense if the resultant study can be sent back to the real robot. For this pur-
pose, the construction of the Robonova-I humanoid robot simulated model in
USARSim is proposed.

4 Bulding Robonova-I Model

The construction of a robot model in the USARSim environment is a very com-
plex process. Since documentation for this task is extremely rare, we will detail
in the following sections the construction of the Robonova-I model. In this ap-
proach, two main steps were adopted: i) robot geometric model construction and
ii) robot scripting.

4.1 Geometric Model

The construction of the geometric model of the robot makes necessary the steps
mentioned next.

Creating the static meshes. In our approach a tridimentional model of the
robot was made in a CAD (Computer Aided Design) environment. We adopted
the AutoCadR© 2007 software, which provides a rich set of 3D creation and
management tools, necessary to reproduce the complex forms of the robot.

One important remark must be done with respect to the XYZ coordinate sys-
tem. Autocad environment is well known to use the XYZ positive axis arranged
according to the LHR (left hand rule). The final assembly of the robot in the
Unreal engine is assumed to arrange XYZ axis according to the RHR (right
hand rule). In order to convert between systems, the orientation of the X axis
must be changed. This situation forces the feet of our CAD robot model to be
constructed above the XY plane, with the robot front oriented to the -X axis.

Accomplishing the first step of the process, a high fidelity model of the
Robonova-I robot was generated in the CAD environment using exclusively static
meshes. It is also important to remark that other kinds of primitives (like sur-
faces or regions) are not recognized in Unreal engine. Each robot material (in
this case golden metal, black plastic and servomotors plastic) was represented in
a different layer. The complete robot drawing was splited, and one new drawing
was created to each rigid part of the robot (without joints). The complete robot
model and its parts are shown in Figure 1.
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Fig. 1. Geometrical model of the Robonova-I robot. a) Assembled robot; b) Exploded
main parts of the robot.

Converting the static meshes. In next step, the static meshes must be con-
verted to its preferred file format to be imported in USARSim. The ASE (ASCII
Scene Exporter) file format is the standard, since it stores identifiers for all file
objects materials. In our approach, we adopted the software 3D Studio MAXR©

8 to realize this task. After a CAD file was imported, three different materials
(simple color patterns) were created using the material editor tool. One material
was assigned to each layer of the original CAD drawing and, so, all static meshes
were attached together forming a single body composed by different materials.
The body was so rendered to texture, in order to generate a texture map. The
texture properly was discarded, and the file was exported to the ASE format.
This process was repeated to each one of the rigid parts of the robot.

Creating textures. In order to allow the use of simple textures in the robot
into the USARSim environment, in proposed approach three standard 256x256
Bitmap files with 8 colors depth were created in the paint software and filled
with the three different colors of the textures.

Assigning textures. In the next step, the textures must be assigned to the
materials specified in the ASE file. This process was realized inside of the Unreal
Editor 2004. First, all three textures were imported and a unique UTX texture
package was created. After this, each of the static meshes of the rigid parts
of the robot were imported into a unique USX package. Still using the Unreal
Editor, each material of each component of the meshes in the USX package was
linked to one of the textures in the UTX package. The USX package now stores
all information about robot geometry, except the information concerning the
position to correctly assemble this parts, which will be informed in the robots
configuration script.

4.2 Robot Configuration

After preparing the robot parts geometric model and textures, it is necessary
to add these new models to the USARSim file structure. However, the robot
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Table 1. Robonova-I parts and parameter values: weight, rotation angle, static friction
rupture with robot up and down

Robot part Quantity Weight Rotation Up SFR Down SFR
- -

Head 1 27g - -
Chest 1 337 - - -
Hand 2 65g 1800 - -
Elbow 2 65g 1800 - -

Shoulder 2 6g 3600 - -
Thigh 2 23g 900 - -
Knee 2 135g 900 - -

Superior ankle 2 44g 1800 - -
Inferior ankle 2 2 23g 1800 - -

Foot 2 83g 900 - -
Spins - 8g - - -

Robonova-I - 1.260g - 260 Kgf 600Kgf

Fig. 2. Frontal view (out of scale) Fig. 3. Back view (out of scale)

physical parameters and dynamics still have to be configured. In this phase,
scripts written in the Unreal Script language are prepared for each part of the
robot, as well as for the complete robot model. For the individual parts, pa-
rameters such as torque, mass, angular velocity, friction, restitution, etc., are
described. These parameters are used by the Karma engine [9] that is respon-
sible for modeling the USARSim system dynamics. As for the complete robot
model script, it contains the static meshes assembling and relative movements
(i.e. axis spin) information.

To keep the fidelity of the model, some experiments were carried out with the
real Robonova-I in order to obtain some of the Karma parameters. Based on the
data of these experiments, well-known physical constants and robot geometry,
one can estimate static and dynamic friction, maximum and minimum joint
aperture, motor torque, etc. Some of the acquired values are shown in table 1.

Finally, scripts were compiled in order to generate the robot model into the
USARSim environment. The final robot model built and imported in the virtual
environment (out of scale) is presented in Figures 2 and 3.
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5 Robonova-I Learning Framework

The design of architectures composed of very simple skills is not easy, nor is
the learning of its sequence, as producing an adequate combination of these
behaviours is not straight-forward. Furthermore, the controller decomposition
introduces the need for determining when to trigger control, i.e. when to re-
evaluate the previously selected behaviour and choose a new one.

Considering these constraints, the framework described proposes the intro-
duction of learning in two levels. In the first level, the information provided by
sensors (gyroscopes, camera and pressure sensors) is used to build the controllers
responsible for movements. These basic controllers represent the set of sequen-
tial servo commands that a robot may perform to execute a movement. We
can divide the controllers in four main groups: i) Walking Controllers; ii) Pre-
cise Positioning Controllers; iii) Special Actions Controllers; and iv) Goalkeeper
Controllers.

In the Walking Controllers the three main controllers are the shift-right, the
shift-left and the forward walk controllers. As the names propose, they are re-
sponsible for the shift-sideways movements and for the forward walk movement
of the robot. Other Walking Controllers are the backward walk, the diagonal
walks (forward left, forward right, backward left and backward right), the turns
(left and right) and the forward run.

In the Precise Positioning Controllers there are just three controllers that
are smaller and more precise versions of the three main Walking Controllers.
They are step-right, step-left and step-forward. The steps are small movements
sideways or forward executed to allow a precise positioning of the robot.

There are four Special Actions Controllers, two of them responsible for the
interaction with the ball, the kick right and the kick left controllers, used to
kick the ball with the right leg and with the left leg respectively. The other two
are the stand-up controller and the bend controller. The stand-up controller is
used when the robot falls to get back to the upright condition while the bend
controller is used to allow the camera to track objects near the feet of the robot.

Finally, the Goalkeeper Controllers are specific actions for the goalkeeper, such
as: defend-right, defend-left and defend-mid. Each of them is used to defend a
ball kicked to the right, left or in the direction of the robot respectively.

As for the second level, once defined the basic controllers, it is possible to
apply the learning approach to automate the process of choosing a controller to
execute in a specific environment situation. Figure 4a presents an overview of
the proposed system architecture.

5.1 State and Action Space Modeling

For using RL algorithms, one has to guarantee that the problem can be modelled
as a MDP (Markov Decision Process), i.e, the problem has to be represented as a
finite set of actions and states and a discrete time model where the states should
be available for measurement. However, real robot tasks have infinite state and
action spaces, continuous time and due to sensorial limitation are not always
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Fig. 4. a) System Architecture. b) Joints position and spin.

measurable. To deal with this problem, a discretization model for the state and
action spaces is proposed.

First, consider the joints robot structure presented in Figure 4b. For each
arm there are three joints with one DOF each, while for each legs these number
reaches five, what give us sixteen DOFs. The state and action space discretiza-
tions are divided into two groups: 1) for low level learning or controllers learning
and 2) for high level learning or switching controller determination.

Low level discretization. The low level action space is composed of sixteen
elements, each representing a servo. Each action corresponds to change a servo
angle by adding or subtracting 15 degrees to its actual state.

If the state vector, defined by the gyroscopes, camera and pressure sensors
values indicate a falling, the robot is assigned with a null value reward and for
each action performed, it receives an unitary reinforce. We work in all cases with
a minimization criterium and with a step corresponding to a change in the servos
configuration. In these cases, the goal is to perform the movements without much
changing in the robot servos and without falling down.

High level discretization. For the high level learning, after fine tuning the
individual controllers, one can apply the high level learning, using the same
state vector defined for the low level phase, to decide which basic controller to
execute. The reward structure considers that each action performed costs a unit
to the learning agent, while accomplishing the goal gives it a null reinforcement
value. This criterium can help the robot to save battery. To help configuring the
learning parameters, a graphical interface was implemented.

6 Conclusion

This paper presented a complete framework for a Robonova-I humanoid robot,
composed by: i) A complete high fidelity geometric model of the robot; ii) A set
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of scritp files to configure this model in the USARSim RoboCup simulator; iii)
An architecture model to be used in robot learning, and iv) A graphical interface
for learning parameters settings.

At the best of our known, this set of features represents the first available
framework of a commercially available humanoid robot. In this way, this frame-
work is expected to work as an important tool in robots dynamics research and
also to contribute to reduce time required to test learning algorithms.

The paper also presented a detailed description of the robot modeling and
configuration process for USARSim environment, filling some gaps in the related
technical literature and expecting to reduce the amont of time required to create
new robots and models in this environment.

As main ongoing works, there is a set of experiments to establish the confi-
dence degree between proposed model and real Robonova-I robot with respect
to dynamics, sense and acts. As future work, we point the implementation of a
large number of RL algorithms in order to extend the framework capabilities.
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Abstract. This paper presents an experience-based collaborative ap-
proach for a group of autonomous robots to localize in asymmetric,
dynamic environments. To help robots play soccer under more natural
conditions, we propose a Markov localization based hybrid method with
integration of environment experience construction and dynamic refer-
ence object based multi-robot localization. By using this method, the
robot can estimate and correct its position perception more accurately
and effectively among a group of autonomous robots, taking the odom-
etry error and other negative influence into consideration. Satisfactory
results are obtained in the RoboCup Four-Legged League environment.

1 Introduction

On the move to real human soccer conditions, current localization approaches
applied in RoboCup (eg. [1], [2]) seem not enough. In the human soccer, there are
two aspects which may inspire the self localization of mobile robot systems. On
the one hand, the features surrounding the soccer field may be exploited as the
sensory information in probabilistic approaches. Inspired by the features, some
systems applied image-retrieval approach in localization [5]. However, the com-
putational cost is expensive. Besides, the requirement of building a huge database
is not practical, especially in complex environments. On the other hand, collab-
oration among the robot team may help self localization. Previous research in
localization has proven that the cooperation in self-localization among multiple
robots has impressive performance in real robot systems (see [3] for overview).
The limitation of such robot systems is that the robot needs to identify other one
precisely. It is difficult to perform collaborative localization for robots dealing
with situations where they can detect but not identify other robots.

Our work focused on applying image-retrieval approach and collaboration in
self localization in RoboCup. In the following section, we describe the method
for individual localization with experience. In section 3, we present how to use
the sharing information to improve the Markov localization when the robot can
not localize accurately by itself. In section 4, satisfactory results on localization
through our approach is shown in experiments using Sony Aibo ERS-7 robots.

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 353–360, 2008.
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2 Individual Localization with Experience

Based on [1]-[2], in our approach, the current position of the robot is modelled as
the density of a set of particles which are seen as the prediction of the location.
Initially, at time t, each location l has a belief:

Belt(l) ← P (L(0)
t = l) (1)

To update the belief of robot possible location, at first, this approach uses the
new odometry reading ot:

Belt(l) ←
∫

P (l|ot, l
−)Belt(l−)dl− (2)

Considering the mobile robot with complex motions, let the geometric center of
robot body as the location vector φ, which contains the x/y- global coordinates
of the center point. Another vector θ is defined as the heading direction. Then
every particle is updated by the motion model as follows when the robot moves:

φt = φt−1 + Δt (3)

where Δt represents the displacement in x/y coordinates and heading direction.
To implement image retrieval system in Markov localization, we divide the

sensory update into two parts: updating position probability by landmark per-
ception and experience matching. If the robot recognizes landmarks well enough,
landmark based sensor model will update the belief of position with the new
landmark reading st:

Belt(φt) ← βP (st|φt)Belt(φt) (4)

where β is a normalizing constant. We set N1(t) which is the amount of lasting
frames of having no landmark perception from t as a condition to activate the
experience system. If N1(t) is great enough, the experience based sensor model
will update the probability as follows:

Belt(φt) ← γP (et|φt)Belt(φt) (5)

where et is the new reading experience with γ being the normalizing constant.

2.1 Experience Construction

The feature that is exploited from images with no landmark in the view, and
represents the invariant character of images obtained at positions where collisions
and other negative effects more likely occur is defined as Experience.

In our method, we divide one image which is obtained by the robot camera
into six parts. First, image features including average color value fi,j and color
variance di in the divided areas are calculated by the following equations:

fi,j =

∑
x,y

M [y][j][x]

Ni
; {j = 0, 2, 3; i = 1, 2, 3, 4, 5, 6} (6)
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where fi,j is the average value in the color channel j of area i. M [y][j][x] repre-
sents the value in the color channel j at the position (x, y) in the image. Ni is
the number of the pixels in area i. Clearly, the fi,j is in the range from 0 to 255.

di =

∑
x,y

(|M [y][0][x] − fi,0| + |M [y][1][x] − fi,1| + |M [y][2][x] − fi,2|)

Ni
(7)

where i=1, 2, 3, 4, 5, 6. di is in the range from 0 to 382.5. When the value of
color variance in the certain area gets maximum, di is 382.5.

After calculating features in divided areas, we collect average color value Fj

and color variance D in the whole image which are calculated by the following
equations:

Fj =
∑

i fi,j

S
; {j = 0, 1, 2} (8)

where Fj represents the average value in the color channel j of the whole image.
S is the number of divided areas in the image.

D =

∑
i

(|fi,0 − F0| + |fi,1 − F1| + |fi,2 − F2|)

S
(9)

where D is in the range from 0 to 382.5.
In our system, the invariant features of images include fi,j , di, Fj , and D.

All the features are calculated from images collected in certain places where the
robot needs experience to help. We construct experience database embedded in
robot’s memory. This database stores the features along with the global coordi-
nates of the position where the image is taken. All the features are calculated
off-line and stored in the database as experience. When the experience module
is activated, the feature of current image taken by camera is computed on-line
notated as imageFeature. Meanwhile, the record notated as bestRecord whose
feature is most similar to imageFeature is selected from the database. Fig. 1
shows the result of finding the best pose in database based on experience. The
query image is on the left while its most similar image in the database is on the
right. Their poses are represented by (x, y, θ). x, y are calculated in millimeter,
while θ is in degree.

When the experience module is activated, difference between imageFeature
and the feature of bestRecord is calculated. If the difference is small enough,
the pose of bestRecord is transferred into bestPose notated as lbest which is in
the form of world coordinates in the robot system. With such bestPose, proba-
bilities of all the sample poses are updated and new pose templates which are
random poses near the bestPose are generated to perform the resample proce-
dure in Markov localization. It is true that the more experience in database, the
more precisely the calculation is. However, building such database is expensive
in time cost and even unreachable in complex environments. As a part of the
sensor update module, experience can help the Markov localization converge as
soon as possible, which means the robot can know own position immediately. In
our approach, we only need to construct the database in those really difficult
situations. This method works well in real robot applications.
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(a) (b)

Fig. 1. Examples for finding the best pose in image database. Images in the database
are collected in the areas of the field where the robot can not see any landmark every
100mm in x, 100mm in y and 45◦ in θ. (a) is the current image taken by robot’s
camera when its real position is (−1660, 1520, 135◦). (b) is the most similar picture to
image (a) in the experience database which the corresponding position of the robot is
(−1600, 1500, 135◦). The location error is 60mm in x, 20mm in y, and 0◦ in θ.

2.2 Self Learning in Experience Collection

One of the difficulties in applying image-retrieval system into real robot lo-
calization is how to collect the experience efficiently and correctly. We create
a self learning method for experience collection. The robot can collect images
along with corresponding positions autonomously. When construct the experi-
ence database, we use the black-white stripes to adjust robot body which is
similar to the one used in gait optimization mentioned in [4]. In the self learning
procedure, at first, the robot adjusts its own body to the initial position which
is preset by our control system. By using the stripes, the robot walks to the next
position and stops to capture images in left and right view respectively as shown
in Fig. 2. The black-white stripes help robot go to the preset position precisely.

(a) (b) (c)

Fig. 2. Self learning procedure in experience collection. (a) shows the Black-white
stripes for body adjusting. The robot captures image in the left view and right view as
shown in (b) and (c) respectively.

3 Collaborative Localization

In RoboCup, static reference objects like beacon, and goal can be used to help
localize in complex environments. However, global coordinates of such objects
need to be known beforehand. Those static reference objects are not applicable
in an unknown environment. To solve this problem, we propose the concept of
Dynamic Reference Object. The object that can be detected by more than one
robots among the team will be the candidate dynamic reference object. If the
frequency of clearly recognizing the object is high enough, it may be set as the
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(a) t=t1 (b) t=t2

Fig. 3. A simple system with five mobile robots and a dynamic reference object: (a) At
time t1, robot A, B and E can see the dynamic reference object O. If at this time robot
A, for example, needs the reference object to help, A will use the calculated position of
the object from B or E. Querying the most possible position in team message shown
in Table 1, A will take the calculated result by B as the reference. (b) At time t2, C
and D have not detected any landmark or experience for a period. Thus their answers
to the object position is relatively unreliable. Position possibilities of them are shown
to be low in Table 1. The reference object position will be set as B percepts.

dynamic reference object. There is no need to know the object’s position as a
precondition. If a robot can localize itself accurately, the position of the dynamic
reference object calculated by this robot is reliable. Meanwhile, another robot
that has seen the reference object can use this calculated position of the object
to measure own location. This information is useful for decreasing the time cost
of Markov localization convergence and improve the result of position estimate
especially for multiple robots collaboration.

With the assumption that robots can communicate with each other, our ap-
proach integrates Reference Object Position Possibility in the team message
which will be broadcasted to every robot. The item which is relevant to the
object position in team message includes calculated position, robot ID, time,
and position possibility. This position possibility is due to the accuracy of the
robot self localization. In our system, the object position possibility is notated
as Pr is measured by the following equation:

Pr = Ple
−μ2

+ Pee
−ω2

(10)

where Pl and Pe are certain probabilities for landmark and experience update
respectively. μ is the sum of lasting frames after detecting the latest landmark,
while ω is the sum of lasting frames after exploiting good experience. In real
robot application, Pr will be normalized less than 1. If Pr is high enough, the
calculated result by this robot will be the most reliable one among different
robots perception. A robot that needs help always uses the most possible position
of the reference object at the same time when it detects the object by itself. To
illustrate the method, a common robot system is shown in Fig. 3 with five mobile
robots. Object O is supposed to be the dynamic reference object. Table 1 is the
real-time information in team message of the system in Fig. 3.
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Table 1. Team message relevant to dynamic reference object

Calculated Position Robot ID Time Position Possibility

(2388, 700) A t1 0.71
(2264, 658) B t1 0.92
(2530, 710) E t1 0.86
(2368, 803) A t2 0.81
(2401, 801) B t2 0.91
(2103, 743) C t2 0.32
(2215, 725) D t2 0.43

In our approach, collaboration is a part of probability update modules in
Markov localization. There is a problem that robots should known when to
activate the collaboration module using the dynamic object as a reference. To
improve Markov localization using our collaborative approach, the collaboration
module will be activated in two situations. We set N2(t) by using as the sum
of lasting frames of having no landmark perception or experience as a condition
to activate the collaboration system. If N2(t) is great enough and the robot has
detected the dynamic reference object, the collaboration module will update the
probability of every poses. In addition, if the robot has a perception of the object
which has a relatively high position possibility, the robot will use this reference
to improve the Markov localization in a collaborative way.

4 Experimental Results

The experience-based collaborative approach presented above has been imple-
mented on the Sony Aibo ERS7 legged robot in RoboCup environment. Fig. 4(a)
shows the environment in 2007. In our localization experiment field, we use the
field similar to the standard field in four-legged soccer field 2007. However, we
remove the beacons. As shown in Fig. 4(b), our field is surrounded by colorful
advertisement which simulates the real human soccer environment.

(a) (b) (c)

Fig. 4. Experimental field. (a) is the soccer field with two colorful beacons in 2007. (b)
shows field with no beacon which is used to test our localization approach. (c) is the
colorful advertisement placed around our test field.

4.1 Individual Robot Localization

We randomly select 8 points to test the self localization results. The robot is
expected to go to the preset positions through localization. When it stops, we
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Table 2. Results of self localization in randomly walking

Point Number Expected Position (x, y, θ) Real Position (x, y, θ) Error (x, y, θ)

1 (−1290,−440, 15) (−1496,−713, 147) (206, 273, 132)
2 (−1450,−300, 0) (−1410,−150, 0) (40, 150, 0)
3 (−180,−670, 45) (−230,−610, 9) (50, 60, 36)
4 (1430,−250, 55) (−1909,−1162, 132) (461, 912, 76)
5 (−650, 170, 0) (−404,−427, 5) (246, 597, 5)
6 (270,−480,−90) (102,−402,−48) (168, 78, 42)
7 (−1440,−340, 10) (−1322,−332, 5) (78, 8, 5)
8 (−2160,−390, 0) (1979,−454, 8) (181, 64, 8)

calculate the real positions on the ground. Table 2 shows the results in detail.
x, y are calculated in millimeter, while θ is in degree.

4.2 Collaborative Localization

In this experiment, the orange ball used in the four-legged league is considered as
the dynamic reference object. We use three robots to perform multi-robot local-
ization. Every robot uses the hybrid system tested in the individual experiment
mentioned above. We set one of the three robots as a sample to estimate our col-
laborative approach. The other two robots move randomly to catch the ball and
broadcast the ball position with position possibilities mentioned in section 3.
We receive the calculated result from the sample robot. Only experience and
collaboration can help the robot localize. The localization result of the sample
robot which has used the collaborative approach is shown in Fig. 5. The prob-
ability distribution can converges quickly after 3-9 seconds when the dynamic
reference object is taken into account.

Fig. 5. The localization result of applying collaborative approach with dynamic refer-
ence object. Solid arrows indicate MCL particles(100). The calculated robot position
is indicated by the solid symbol. (a) is the initial uniform distribution. (b) is the cal-
culated result after 3 seconds. (c) is the well localization result after 9 seconds.

(a) t = 0s (b) t = 3s (c) t = 9s
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5 Conclusion

In this paper, we have demonstrated an experience-based collaborative approach
that combines image database for experience without landmarks and real-time
sensor data for vision-based mobile robots to estimate their positions under more
natural conditions towards real human soccer environment. On the one hand,
our approach presented a fast and feasible system for vision-based mobile robots
to localize in the dynamic environment even if there is no artificial landmark to
help. On the other hand, we showed the collaborative method with introduction
of Dynamic Reference Object to improve the accuracy and robustness of self
localization, even in the circumstance that the robot can not localize individually
or has no idea of who is nearby.
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Abstract. This paper proposes a method to allocate multiple cameras
to a better or the best positions. In RoboCup Small Size League(SSL),
two or more cameras are used, and we have to decide the layout of
them at the venue. This paper gives a criterion which minimizes the
risk, for example, the occlusion of a ball by robots, and solves it by using
Fletcher-Reeves conjugate gradient algorithm. Experimental result shows
the effectiveness of the proposed method.

1 Introduction

Figure 1 shows an example of multi-camera’s layout in RoboCup SSL, and in
this case, the cameras are placed to cover whole of the game field. These kinds
of cameras are set at the suitable places based on the human experiences where
the cameras could catch an object around the center of the image.

Kono et al. have reported an assist system which utilizes several cameras
attached on the human’s body[1]. Although they allocate multiple cameras based
on a subjective criterion, there is no objective criterion. When we use multi-
camera system, we are requested to decide the number and the places of the
cameras. It is necessary to solve the most suitable number of cameras. How
to solve the minimum number of security cameras is expressed in Art Gallery
Problem[2]. This research provides only the cost minimum criterion. On the
other hand, Kato et al. have treated the data traffic in the network and showed
how to solve the maximum number of cameras[3].

As shown in Fig. 2, according to the number of the cameras increases, the
computing cost or the traffic on the network increases, on the other hand, the

Fig. 1. An example of multi-camera’s layout
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Fig. 2. The relation between the number of cameras and some evaluation values

Fig. 3. Cameras attached on the truss(interruption to other team’s view is not allowed)

risk such as missing a ball decreases. An answer for the former is obtained
by solving the trade-off problem between the computing cost and the risk, for
example. This answer gives us one of the most suitable number of cameras. For
the latter problem, a kind of criterion such as minimum cost, minimum data
transfer traffic in the network, minimum risk, and so on, is required to decide a
better or the best positions of them.

As for the places of multi-cameras, some criterion have been provided. There
is a system which measures the shape of insects for the electronic museum. The
paper resulted that it is better to place many cameras near the thready places
than to place them at regular intervals around the measured insects[4].

Furthermore, there sometimes exists spatial restriction as shown in Fig. 3. It
is not allowed to interrupt other camera’s view. We have to decide a better or
the best positions of cameras under these conditions or the restrictions at the
venue.

This paper proposes a method to decide a better layout of multiple cameras
under the condition that the risk is minimum. In the following, sections 2. and
3. describe how to model and calculate the risk and how to decide the best posi-
tions of cameras, respectively. Section 4. shows the effectiveness of the proposed
method based on the experimental simulation results.

2 Risk Model in RoboCup Competition

Figure 4 shows a robot in RoboCup SSL. It is limited less than 18cm diameter
and less than 15cm height. In RoboCup SSL, the robots game on a field of size
5.5m×4.0m including 0.3m width technical area. In the competition, each team
uses 5 robots and an orange color golf ball on the field.
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Fig. 4. Robot’s overview

(a) A robot is close to the ball. (b) In the image through a camera,
the ball can’t be observed.

Fig. 5. Occlusion by a robot

There are two methods to take the coordinates of robots and a ball. Global
vision overlooks robots and ball from the ceiling and local vision detects cir-
cumjacent robots and ball from a robot. Multiple cameras in the global vision
system are placed on the truss built on 4m high. Many teams use multi-camera
global vision system in RoboCup SSL because it is difficult to overwatch the
whole field with one camera.

One of the risk in RoboCup SSL is the occlusion by the robots. The global
vision loses a ball if the robot moves closer to or many robots close up the ball.
Figure 5 is a typical case of the occlusion in RoboCup SSL. Figure 5 (a) shows
that a robot is near the ball. Figure 5 (b) is an occluded image through a camera.
There appears only robots in the image and the ball is not observed in it. If the
occlusion occurs like this, it affects on the strategic planning of robots.

The area S of occlusion caused by a robot is defined as a function of the
coordinates of camera C(x, y, z), robot R(x, y, z) and ball B(x, y, z). Let the
probability distribution of a robot be P(R)(x, y) in the field F . Then, P(R)(x, y)
satisfies ∫∫

F

P(R)(x, y)dxdy = 1. (1)

So, the evaluation value E of occlusion is defined and expressed as

E =
∫∫

F

S P(R)(x, y) dxdy. (2)

3 How to Decide Multi-cameras Layout

This paper calculates camera’s coordinates C(i)(x, y, z) (1 ≤ i ≤ N) that
minimize E. E is minimum means that the risk is minimum, so, this solution is
one of the optimal positions of cameras.
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3.1 Simulation of Occlusion with a Cameras

When camera, robot, ball are in the same plane, a ball is frequently occluded
by a robot. In order to discuss simply, let a line connected with the centers of
them on the x-y plane be u-axis, and its vertical line which passes C be z′-axis,
respectively as shown in Fig. 6, then the following equations are devised.

u =
√

(x − xC)2 + (y − yC)2 (3)

x = u × cos

{
tan−1

(
yB − yC

xB − xC

)}
+ xC (4)

y = u × sin

{
tan−1

(
yB − yC

xB − xC

)}
+ yC (5)

Figure 7 demonstrates how to calculate the distance d between the robot and
the ball. d is calculated on u-z′ plane using the relation between the circle and
the tangential line in Fig. 7.

A tangent line is drawn from the camera to the robot (displayed as a rectangle
in Fig. 7). The equation of this line(L1) is obtained as:

z =
zR − zC

uR + rR
u + zC . (6)

The coordinates U(u0, 0) is obtained as the point at the intersection of this
line and u-axis. L2 is a line passing through (uB, zB) and (u0, 0). The following
equation

zB

u0 − uB
� 1

2
zC

u0
(7)

satisfies the gradient of L1 and that of L2. In consideration of robot and ball
radius, d is calculated as

d = |uB − uR| − rR − rB . (8)

If d is less than 0, it means that a ball is not occluded by a robot. So, in this
case, let it be d = 0. By using this value d instead of S, a new evaluation value
E′, replacing to Eq.(2), is obtained as:

E′ =
∫∫

F

d × P(R)(x, y) dxdy. (9)
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3.2 Simulation of Occlusion with Multiple Cameras

When multiple cameras are used, it is necessary to consider the overlapped area.
d(i) denotes d of the i-th cameras(1 ≤ i ≤ N). Considering that at least one
camera could catch the ball, Eq. (9) is rewritten as:

E′′ =
∫∫

F

min
i
{d(i)}P(R)(x, y) dxdy (10)

due to evaluate multiple cameras. This paper solves all the positions C(i)(x, y, z)
(1 ≤ i ≤ N) of all cameras which minimize E′′.

4 Experiment

4.1 Simulation Environment

Simulation experiment was done with parameters using RoboCup SSL. Based on
the official regulation, Laws of the F180 League 2006, the field size is 5500mm
× 4000mm including 4900mm × 3400mm court and 300mm width technical
area, the maximum size of the robot height is 150mm and the radius is 90mm,
respectively. The radius of a ball is 21.5mm, the heights of the cameras is 4000mm
because the height of truss shown in Fig. 3 is 4000mm. So the coordinates of
the cameras are C(i)(x, y, 4000) (1 ≤ i ≤ N). Based on Eq.’s (3), (8) and (10),
the occlusion probability is obtained.

We have reported the result of multi-camera’s layout which minimizes the
occlusion for SSL. This was calculated under the condition that the robots ex-
isted equally in the field[5]. Figure 8 shows the probability distribution of our
robots. It was given by analyzing the five logs of the past RoboCup SSL compe-
titions. The logs recorded the coordinates and the velocity information of robots
and ball, referee signal, time and so on. The coordinates information of our
team’s robots is used to make this distribution. According to the Laws of the
F180 League 2006, the teams change their attack side in each half. And E′′ is
regarded as an approximate solution as

E′′′ =
∑
F

min
i
{d(i)}P(R)(x, y). (11)
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Table 1. Strategic camera coordinates (N = 9)

Camera C∗
(i)(x, y) C(i)(x, y) Camera C∗

(i)(x, y) C(i)(x, y)

Number Number
1 (-1955, -948) (-1877, 27) 6 ( 1851, 1969) ( 1393, 1215)
2 ( 310, 700) ( 2044, 15) 7 ( -411, -1058) ( -421, -833)
3 (-2148, 693) (-1784, 1258) 8 (-1679, -1634) (-1734, -1196)
4 ( 679, -1879) ( 1496, -1216) 9 (-1618, 521) ( -471, 782)
5 ( -243, -862) ( 707, -32)
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Fig. 9. Strategic multi-cameras layout
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Fig. 10. Layout example (N = 9)

It takes about a day to calculate the minimal solution with full search in the
range of −2750 ≤ x ≤ 2750, −2000 ≤ y ≤ 2000. So, we utilized Fletcher-Reeves
conjugate gradient algorithm to obtain an optimized solution.

4.2 Algorithm

The algorithm used in this experiment is shown below.

Step 1. Set the initial position for (x, y) with pseudo random number in the
range −2750 ≤ x ≤ 2750 and −2000 ≤ y ≤ 2000.

Step 2. Move a robot in the raster scan procedure on the field F . Δx = Δy =
50mm for the reduction of computing time.

Step 3. Calculate the distance d(i)(1 ≤ i ≤ N) for all i. Search min
i
{d(i)} and

calculate E′′′ by Eq.(11).
Step 4. By using Fletcher-Reeves conjugate gradient algorithm, update camera

coordinates C(i)(x, y) for all i to the direction that E′′′ decreases.
Step 5. Repeat from Step 2 to Step 4 while E′′′ decreases. If this is not satisfied,

terminate this algorithm.

4.3 Experimental Result

Table 1 shows the result of strategic multi-cameras layout that nine cameras
(N = 9) are used. Figure 9 demonstrates the result C(i)(x, y) plotted on the
2-dimensional field of 4900mm × 3400mm. Figure 10 is an example of multi-
cameras layout on the 3-dimensional space. Figure 11 shows the simulation
results for other numbers.



Strategic Layout of Multi-cameras Based on a Minimum Risk Criterion 367

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000  0  1000  2000

F
ie

ld
 y

 [m
m

]

Field x [mm]

(a)(N = 2)

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000  0  1000  2000

F
ie

ld
 y

 [m
m

]

Field x [mm]

(b)(N = 3)

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000  0  1000  2000

F
ie

ld
 y

 [m
m

]

Field x [mm]

(c)(N = 4)

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000  0  1000  2000

F
ie

ld
 y

 [m
m

]

Field x [mm]

Cameras

Field

(e)(N = 5)

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000  0  1000  2000

F
ie

ld
 y

 [m
m

]

Field x [mm]

(e)(N = 6)

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000  0  1000  2000

F
ie

ld
 y

 [m
m

]

Field x [mm]

(f)(N = 7)

-2000

-1500

-1000

-500

 0

 500

 1000

 1500

 2000

-2000 -1000  0  1000  2000

F
ie

ld
 y

 [m
m

]

Field x [mm]

Cameras

Field

(g)(N = 8)

Fig. 11. Strategic multi-cameras layout (N = 2, 3, · · · 8)

Table 2. Results of E′′′ (N = 2, 3, · · · 9)

N E′′′ [mm] N E′′′

2 7.809 6 1.813
3 5.558 7 1.263
4 4.026 8 0.951
5 2.668 9 0.636  0
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Fig. 12. Relation between N and E′′′

5 Discussion

In order to obtain the best number of cameras, we experimented by changing the
number of cameras N from 2 to 9 and calculated each E′′′. Table 2 and Fig. 12
show the relation between N and E′′′. Here, the values(N , E′′′) in Table 2 are
plotted in it, and the curves are solved approximately as y = a ∗ exp(−bx) with
least square method. In this experiment, the data are fitted as y = 16.01 ∗
exp(−0.38x). From this result, it is considered that the risk (occlusion) obeys
exponentially.

6 Conclusion

This paper proposed optimal cameras’ layout for global vision in RoboCup SSL.
By giving a criterion that minimizes the risk of occlusion by the robots, a method
to decide the camera’s coordinates is realized. The occlusion was modeled from
the positional relations of cameras, robots, a ball and probability distribution
of the robots. This method was applied to the concrete parameters used in
RoboCup SSL and solved the optimal camera’s positions.

Though the simulation was done on the condition that cameras looked down
directly below, it is concretely difficult to satisfy this condition. To improve
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simulation parameters like direction and angle of view, and to realize high speed
simulation are coming subjects.
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Abstract. This paper presents a new approach for color segmentation,
in which colors are not only mapped to unambiguous but also to ambigu-
ous color classes. The ambiguous color classes are resolved based on their
unambiguous neighbors in the image. In contrast to other approaches,
the neighborhood is determined on the level of regions, not on the level
of pixels. Thereby, large regions with ambiguous color classes can be re-
solved. The method is fast enough to run on a Sony AIBO in real time
(30 Hz), leaving enough resources for the other tasks that have to be
performed to play soccer. In addition, the paper discusses the problem
of motion compensation, i. e. reversing the effects of a rolling shutter on
the images taken by a moving camera.

1 Introduction

In most RoboCup leagues, cameras are the central sensor of the robots. As the
environment is color-coded, image segmentation is one of the most important
topics in soccer robot’s image-processing systems. Especially in leagues with
limited on-board computing power, such as the Four-Legged League and the
Humanoid League, extremely fast and robust image segmentation algorithms
are a necessity. A new approach to this problem is presented in Section 2. Also
typical in these leagues is the use of inexpensive CMOS cameras, e. g., the Sony
AIBO, the standard platform used in the Four-Legged League, is equipped with
such a sensor. Section 3 deals with the central problem of this kind of sensor,
the so-called rolling shutter.

2 Image Segmentation

2.1 Current Methods

There are two general image-processing approaches in RoboCup. The first one
is the blob-based approach (e. g. CMVision [1]), the second one is the grid-based
� This work has been funded by the Deutsche Forschungsgemeinschaft in the con-

text of the Schwerpunktprogramm 1125 (Kooperierende Teams mobiler Roboter in
dynamischen Umgebungen).
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approach (e. g. the vision system of the GermanTeam [2]). While blob-based
approaches such as CMVision entirely rely on color segmentation, the vision
system of the GermanTeam still does it for the most part. The general problem
is that a color classification is hard to find in which, e. g., the ball is completely
orange, but orange is detected nowhere else on the field (neither in yellow goals,
nor in red uniforms). Hence, teams such as the GermanTeam or the NUbots [3]
have started to use additional color classes such as yellow-orange or red-orange
that delay the decision about which color the pixels actually have. Quinlan et al.
[3] call these color classes soft colors. They resolve these soft colors after the
blob formation based on relations between the bounding boxes of the blobs. The
relations are object-specific. Palma-Amestoy et al. [4] present a more general
approach for defining and resolving soft colors. From example images that are
labeled manually with the unambiguous color classes that the objects in the
images should have, a color table with soft colors is automatically generated.
Images are segmented using the soft colors and afterwards a mode filter is applied
that assigns the color class to each pixel that is the most frequent in its 3 × 3
neighborhood.

2.2 Ambiguous Color Tables

A color table is a mapping from image colors to color classes. Typically 2563

possible colors exist in an image (one byte for each color channel; Y, Cr, and Cb
in case of the AIBO), and they have to be reduced to only a few color classes.
In case of the Four-Legged-League in 2007, these are the seven classes orange,
yellow, sky-blue, red, blue, green, and white. An ambiguous color class is a color
class that contains more than one of these base classes, e. g. yellow-orange or
red-orange. Ambiguous color classes are represented as a bit-set, i. e. each bit of
a byte stands for one of the color classes. A color table can be implemented as
a simple lookup table, i. e. the color values function as indices into a 3-D array
of color classes. Since a color table of 16 MB would be quite big, the table takes
only the six highest bits of each color channel into account. Thus the size of the
color table is 643 = 262144 bytes. In contrast to the work described in [4], the
color tables are created manually, using a color table editor.

2.3 Image Segmentation with Ambiguous Color Classes

In general, image segmentation with ambiguous color classes uses the same base
algorithms as segmentation with unambiguous color classes [1], but it applies
them several times with slight differences to resolve the ambiguities. Since the
whole image is processed, no color correction is performed to eliminate the bluish
corners of the camera images of the AIBO. Instead it is assumed that this prob-
lem is handled by the ambiguous color classification.

In a first step, all pixels are segmented determining their (ambiguous) color
class from the color table. Successive pixels with the same color class are com-
bined to runs. Each run contains its color class, its y-coordinate, and its first and
last x-coordinate. For the image size of 208 × 160 pixels used in the AIBO, all
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a) b)

c) d)

Fig. 1. Grouping runs to regions (taken from [1]). a) Runs start as a fully disjoint
forest. b) Scanning adjacent lines, neighbors of the same color class are merged. c)
New parent assignments are to the furthest parent. d) The first run in a region is
always the parent of all others.

these values can be represented by bytes. Since the camera images of the AIBO
are rather noisy when taken with the fastest shutter setting, the run length en-
coding typically reduces the image size only by factor 10, i. e. around 3000 runs
will be generated. Please note that an ambiguous segmentation creates more
runs than an unambiguous one, because there are simply more color classes.

The collection of runs is traversed five times. In the first phase, only runs
of the same ambiguous color class are grouped together, because these regions
are required for the next two phases. Runs with unambiguous color classes are
simply skipped. Grouping runs to regions is based on the work of Bruce et al.
[1], who describe it as a union-find problem that can be solved highly efficiently
(cf. Fig. 1). The collection of runs is processed from top to bottom and from left
to right. There are always two current runs in two adjacent rows. Whenever they
overlap and have the same color class, they are grouped together. Groups are
defined as a tree structure with each run having a pointer to its parent. During
merging, path compression is applied, and it is ensured that the first run in a
group is always the parent of all others.

Regions of ambiguous color classes inherit the unambiguous color class of
which they are surrounded most. This extends the mode filter approach de-
scribed in [4] to the level of regions. Therefore, a histogram has to be calculated
for each region with an ambiguous color class on which unambiguous color class is
neighbored how often, i. e. how many pixels on the region’s perimeter are neigh-
bored to which color class. Therefore, a second pass over the runs is performed.
This time it is focused on the neighborhood between runs of unambiguous and
ambiguous color classes, and for each such pair, the histogram of the ambiguous
region involved is updated. In this pass, the neighborhood between runs in the
same row has also to be considered.

After all the histograms have been calculated, the ambiguous color classes can
be resolved. This is done in a third pass. Each ambiguous color is replaced by the
unambiguous class that reached the highest score in the histogram of the region,
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a) b) c)

d) e) f)

Fig. 2. Image segmentation with ambiguous color classes. a, d) Original camera images.
b, e) Segmentation with ambiguous color classes. c, f) Resolution of ambiguous color
classes.

but only if that score is above a threshold (e. g. more than two pixels). Regions
that do not satisfy this criterion are deleted. Thus, ambiguous regions that are
only surrounded by other ambiguous regions are removed. It would be possible
to delay the resolution of the color class of such a region until its neighbors have
unambiguous color classes, but this would take considerably more computing
time, and therefore it was not implemented.

After the ambiguous color classes are resolved, a final merging pass over the
runs is performed to group all regions. Again, some special treatment is required,
because now there are successive runs within the same row that have the same
color class. They are grouped together to single runs on the fly while merging
the regions. In the final phase, the blobs are collected.

2.4 Results

Figure 2 shows some examples of segmented images. The first column shows two
images as they are taken by the camera of the AIBO with the fastest shutter
setting. The camera was turning quickly while the image shown in Figure 2a
was taken, resulting in rather blurry colors. The column in the middle shows the
result of the segmentation using an ambiguous color table. Please note that large
parts of the ball and the uniform of the red robot are segmented as the ambiguous
color class red-orange. Since the blue uniform is very dark, it was decided to use
the same color class for black and blue. Hence, not every blue region on the field
is an indication for a robot of the blue team, but this problem exists as long as
the Four-Legged League, and cannot be solved on the level of color segmentation.
However, as can be seen in the right column, other ambiguities can be resolved
very well. The red uniforms are entirely red and the ball is always completely
orange. The robots and the walls are white and the field is green, even in the
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Fig. 3. Runtime measurements on an AIBO in ms

corners of the image. Figure 3 shows the runtime of the individual parts of the
system.

3 Motion Compensation

The AIBO is equipped with a simple CMOS camera. Such cameras can also be
found in PDAs such as the Siemens Pocket Loox 720 that is used by several
teams in the Humanoid League, e. g. by the BredoBrothers [5]. Such cameras
have a central weakness, the so-called rolling shutter. Instead of taking images
at a certain point in time, a rolling shutter takes an image pixel by pixel, row
by row. Thus the last pixel of an image is taken significantly later than the first
one. The general problem is depicted in Figure 4. The AIBO is equipped with
a camera in its head that takes 30 images per second. By moving its head, the
AIBO can point the camera in different directions. Since an image is not taken
all at once, the camera may point to a different direction when the first pixel
is recorded than when the last pixel is taken. In Figure 4a the AIBO turns its
head from right to left. Thus the head is pointing further right when the upper
image part is taken and further left when the lower part is taken. This results in
a distorted image as depicted in Figure 4b. In fact, the effect is not only present
during panning the camera, but also when it is tilted or even rolled.

3.1 State of the Art

The problem of the rolling shutter was first mentioned by Nistico and Röfer
in [6], and later analyzed in more detail by Nicklin et al. [7]. The approach of
compensating the effect of the rolling shutter described by Nistico and Röfer
is the most general one. However, it requires calculating the positions of all
percepts twice, and in merging the pairs of locations or bearings a rather heuristic
approach is followed. Nicklin et al. concentrate on the compensation of horizontal
distortions resulting from panning the camera [7]. They determined that the
camera of the AIBO actually takes the full 33.3 ms to take a picture, i. e. there
is basically no delay between recording the last pixel of one image and the first
pixel of the next one. The camera images and the joint angles on which the
calculation of the camera position is based do not arrive at the same time,
but they are time-stamped. As is indicated in the team report of the Microsoft
Hellhounds [8], it seems that the timestamp of the joint angles matches the time
when 3/4 of the image is recorded.
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a) b)

Fig. 4. Image distortion by a rolling shutter. a) Robot is turning its head while taking
an image. b) Resulting camera image.

3.2 2-D Motion Compensation

Nicklin et al. [7] only compensate for horizontal distortions of the image. How-
ever, as can be seen in Figure 5b/e and c/f the rolling shutter shrinks the image if
the head is turning downwards and stretches it when turning upwards. Because
of the gravity, the head can be tilted faster downwards than upwards, resulting
in the stronger effect shown in Figure 5b/e. The distortion in vertical direction
impedes the calculation of distances to objects if the calculation is based on their
position in the image, e. g. the distance to field lines can be determined this way.
The distortion can add systematic errors to these calculations. For instance if
the head is always turning upwards when looking to the right and turning down-
wards when looking to the left, as it is often done when scanning for the ball,
distances to field lines are overestimated in one direction and underestimated in
the other, resulting in a bad self-localization.

The motion of the camera between the previous image and the current image
can be determined from the rotation matrices Rt and Rt−Δt that describe the
orientations of the camera as ΔR = R−1

t Rt−Δt. From ΔR the relative pan angle
α and relative tilt angle β can be calculated and used when applying the equation
from [7] to the 2-D case:

(
x′

y′

)
=

⎛⎝ cx − f tan
(
arctan cx−x

f − dα
)

cy + f tan
(
arctan y−cy

f − dβ
) ⎞⎠

where d =
y

imageHeight −0.75

Δt30Hz

(1)

(x′, y′) is the corrected position of the pixel (x, y). (cx, cy) is the image center and
f the focal length of the camera. The decimal number 0.75 is used because the
camera position was measured when 3/4 of the image were taken (cf. previous
section). The factor d is only dependent on the y-coordinate, because the effect
of the x-coordinate on the distortion of the image is far below a single pixel. The
equation also works if Δt is more than the delay between two successive images,
e. g., if an image was skipped.
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a) b) c)

d) e) f)

Fig. 5. Images taken will the camera was moving a) right, b) down, c) up. d–f) Cor-
rected images. The orange circles represent the ball positions, also projected back to
the original images.
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Fig. 6. Errors in horizontal bearings to the ball when turning the head with 300◦/s

3.3 Results

The simplest way to determine the improvements achieved by motion compensa-
tion is to let the AIBO turn its head quickly while the image-processing system
determines the bearing to a static object in the environment. Here, as well as
in [7] and [8], the static object is a ball. Figure 6 shows the results of the ex-
periment using a ball detector based on the approach presented in Section 2,
and the current head motion of the GermanTeam, which has a slight stop in the
middle. The standard deviation of the bearings without motion compensation
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is 3.59◦ (without the stop it is 5.54◦). When the ball position is determined
from the distorted image using a Levenberg-Marquardt least-square fitting [9]
and the position of its center is corrected afterwards, the standard deviation of
the bearings is 1.81◦. If the edge points of the ball are corrected before they are
used in the fitting algorithm, the standard deviation is reduced to 1.76◦. The
influence of stopping or not stopping the head on these results was negligible.

4 Conclusions

This paper describes two methods to improve image-processing in RoboCup.
The image segmentation using ambiguous color classes is a general solution
to blob-based image-processing. It is fast and simplifies post-processing signifi-
cantly, because many of the problems that result from noisy camera images are
already dealt with during image segmentation. The section on motion compen-
sation brings together all the findings of different teams on this topic and adds
a compensation for up and down rotations of the camera. Thus the precision of
bearings to objects could significantly be improved.
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Abstract. In this paper, we propose a novel agent positioning mecha-
nism for the dynamic environments. In many problems of the real-world
multi-agent/robot domain, a position of each agent is an important factor
to affect agents’ performance. Because the real-world problem is gener-
ally dynamic, a suitable positions for each agent should be determined
according to the current status of the environment. We formalize this
issue as a map from a focal point like a ball position in a soccer field
to a desirable positioning of each player agent, and propose a method
to approximate the map using Delaunay Triangulation. This method is
simple, fast and accurate, so that it can be implemented for real-time
and scalable problems like RoboCup Soccer. The performance of the
method is evaluated in RoboCup Soccer Simulation environment com-
pared with other function approximation method like Normalized Gaus-
sian Network. The result of the evaluation tells us that the proposal
method is robust to uneven sample distribution so that we can easily to
maintain the mapping.

1 Introduction

In many problems of the multi-agent/robot domain in real-world environment,
the position of each agent is a significant factor to affect the agent’s performance.
For example, in a multi-robot transportation system, a cordinatin of position-
ings of robots are decided carefully by given tasks and status inputs in order to
realize efficient convey. Similarly, in the games which teams play in the dynamic
environment like a soccer, each agent should make a decision about its position-
ing continuously according to the current game status in order to fulfill its role
or duty. Otherwise, the performance of the team will be decreased significantly.

In order to realize effective positionings or formations of agents, most of
RoboCup teams generally use rule-based and/or numerical-function-based posi-
tion definition systems. However, this approach meets a difficulty when we like
to tune the positionings for a certain situations like case when a ball is in a
penalty area. Because penalty areas are very important region in soccer, small
miss of the position may cause critical situation. Therefore, rules and functions
to determine the position in such cases becomes so complex that it becomes
difficult to maintain.

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 377–384, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



378 H. Akiyama and I. Noda

Another approach for the positioning is to utilize machine learning methods.
In this approach, we just need to give examples of desireble positioning or train-
ing schema for agents to learn suitable positioning rules/functions. For example
in the penalty-area cases above, we just give many examples for penalty area
to tune sensitive positioning of the dangerous region. However, this learning ap-
proach has a general problem how to give enough example or training for agent.
Especially in a complex domain like RoboCup, it is difficult to give enough num-
ber of examples for learning by hand. It is also difficult to provide reasonable
evaluation method for trainings to provide suitable index of the learning.

In this paper, we propose a novel positioning mechanism which uses Delaunay
Triangulation and the linear interpolation method. In this method, we formalize
learning problem of the positioning as a function approximation. The mecha-
nism used in the model is effective to acquire the interpolation function, which
a focal point in the environment is used as input and agents’ move target posi-
tion is output. In the experiment, we used the RoboCup Soccer Simulator[6,1]
as an experiment environment. We compared our method with other function
approximation method, Normalized Gaussian Network.

2 Positioning Problem in the RoboCup Soccer Simulation

In the RoboCup Soccer Simulation domain, Situation Based Strategic Position
(SBSP)[8] is well known as the agents’ positioning mechanism. SBSP uses a ball
position as a focal point and does not consider other agents. But, if we assume
that all agents always pay attention to the ball, the cooperative behavior can be
done indirectly. Because it is easy to implement SBSP, almost all teams in the
RoboCup Soccer Simulation League use SBSP or the similar model.

SBSP uses a simple function that uses the the ball coordinate value as an input
value and outputs the player agent’s basic move position. And the attraction
parameters and the movable region are defined for each agent and are used to
calculate the final output value. Fig.1 shows a basic SBSP algorithm.

BasePos means the agent’s position when the ball is located at the center
of field. AttractionToBall means the rate that agent follows the ball move.

GetSBSPPosition( Num, BallMove )

Num : agent number

BallMove: ball move vector from the center of field

1. BasePos := BasePosition( Num );

2. AttractionToBall := BallAttract( Num );

3. SBSPPos := BasePos + BallMove * AttractionToBall

4. Region := MovableRegion( Num );

5. if Region does not contain SBSPPos

6. adjust SBSPPos into Region

7. return SBSPPos

Fig. 1. The basic algorithm of SBSP
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SBSPPosmeans the agent’s move position. If SBSPPos is not contained by Region,
the SBSPPos is adjusted into Region.

The problem of SBSP is that the output value depends on the used function. In
the basic SBSP algorithm, the characteristic of agent’s move also becomes simple
because the simple linear function is used. If we want the more complicated
agent’s move, we need to prepare the several parameter set for each situation.
But, it is difficult for us to manage such many parameters and the relation of
the situations correctly.

In our previous research[2], we used a non-linear function instead of the SBSP
algorithm. To acquire the non-linear function, we used a traditional three layer
perceptron as a function approximator and the training data set is created by
human supervisor using a GUI tool. As a result, we could acquire the good ap-
proximation function that can be used in the real game. However, it is difficult
to acquire the completely desired result because the overfitting is a critical prob-
lem. So, we concluded that we need a locally adjustable function approximation
model.

3 Positioning Mechanism Using Delaunay Triangulation

We propose a novel positioning mechanism that uses Delaunay Triangulation
and the linear interpolation algorithm. In this model, the region is divided into
several triangles based on the given training data, and each training data affects
only the divided region where it belongs to. So, the proposal model is locally
adjustable.

3.1 Delaunay Triangulation

Delaunay Triangulation is one of the method to triangulate tha plane region
based on the given point set. Delaunay Triangulation for a set P of points in the
plane is a triangulation DT (P ) such that no point in P is inside the circumcircle
of any triangle in DT (P ). If the number of given points are more than 3, we can
get a unique Delaunay Triangulation. Fig. 2(a) shows the example of Delaunay
Triangulation. In this figure, Voronoi Diagram is also shown. There is a duality
between Voronoi Diagram and Delaunay Triangulation. In our programs, we
implemented the incremental algorithm[4] that is one of the fastest algorithm to
calculate Delaunay Triangulation and the time complexity is O(n log n).

In our proposal method, the ball positions in training data are used as the
vertices of triangles and each vertex means the given training data. Each vertex
has the output value as an agent’s move position for that vertex(=ball) position.
When the ball is contained by one triangle, agent’s move position is calculated
by interpolation algorithm described in next section.

3.2 Linear Interpolation Algorithm

We use the simple linear interpolation algorithm to calculate the agent’s move
position. This algorithm is same as Gouraud shading algorithm[3]. Gouraud
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(a) Example of Delaunay Tri-
angulation

(b) Liner interpolation by
Gouraud shading algorithm

Fig. 2. Delaunay Triangulation and Linear Interpolation

shading algorithm is a method used in the computer graphics domain to simulate
the differing effects of light and color across the surface of an object.

Fig. 2(b) shows the process of Gouraud shading algorithm. The output values
from vertices Pa, Pb and Pc are O(Pa), O(Pb) and O(Pc) respectively. Now,
we want to calculate O(B), the output value of the point B contained by the
triangle PaPbPc. The algorithm is as follows:

1. Calculates I, the intersection point of the segment PbPc and the line PaB.
2. The output value at I, O(I), is calculated as:

O(I) = O(Pb) + (O(Pc) − O(Pb))
m1

m1 + n1

where |−−→PbI| = m1 and |−−→PcI| = n1.
3. O(B) is calculated as:

O(B) = O(Pa) + (O(I) − O(Pa))
m2

m2 + n2

where |−−→PaB| = m2 and |−→BI| = n2.

3.3 Advantages

The proposal positioning mechanism has following advantages:

– High approximation accuracy. Our method realizes higher accuracy than
other function approximator.

– Locally adjustable. Even if new training data is added or existing data is
modified, the triangle region where that data is not contained is never af-
fected.

– Simple and fast running. It is possible to use it in real time.
– High scalability. Even if the considered region is extended or shrinked, it is

easy to correspond to the new region without any changes.
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– Complete reproducibility. If the training data is same, we can acquire the
completely same result.

Especially, the complete reproducibility is an important advantage. Because
there is no limitation of the input order of the training data, any training data
can be added at any time. This means that human can intervene at any time.

4 Experiment

In order to evaluate our method, we compare our method with other function ap-
proximator. We developed the simulated soccer team which can use our method
and Normalized Gaussian Netrowk(NGnet)[5].

4.1 NGnet

This section describes the brief definition of NGnet. NGnet is one of the extended
methods of Radial Basis Function(RBF) Network[7]. The network structure of
NGnet and RBFNetwork is almost same as the three layer perceptron. But,
the Gaussian basis function is used as an activation function instead of the
sigmoid function. These methods are known as a locally adjustable function
approximator.

The difference between NGnet and RBFNetwork is whether the output of
each unit is normalized by the sum of units’ output or not. The normalization
guarantees the activation of at least one unit for any input value. On the other
hand, in the RBFNetwork, if the distance between units is big, output values
become almost 0. In the agent positioning problem, it is not preferable that the
output values become 0. Because NGnet can solve this, we adopt NGnet as the
compared method in this paper.

The output of the unit i in output layer is

fi(x, w) =

∑N
j=1 wijφj(x)∑N

j=1 φj(x)
(1)

where x is an input vector, wij is the connection weight for unit i from hidden
layer to output layer. φj(x) is the output of basis unit j in hidden layer:

φj(x) = exp(−||x − cj ||2
2σ2

j

) (2)

where cj is the center position of basis unit j and σj is the variance parameter
of basis unit j. In NGnet, we need to acquire three parameters, wi, cj and σj .

The connection weight wi is learned by the following gradient descent method:

w(t + 1) = w(t) − η
∂ε

∂w
+ α(w(t) − w(t − 1)) (3)

The error value of agent’s position at each training data point is used as ε . In
this experiment, the learning rate η is set to 0.1 and the rate of moment method
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(a) All Data (b) Biased Data (c) Minimum Data

Fig. 3. Training data set used in the experiment

α is set to 0.5. The ball positions of training data are just used as the center of
basis unit cj . So, the number of training data is same as the number of basis
unit. The following heuristic value is used as the variance parameter σ:

σ =
1
N

N∑
i=1

||ci − cj || (4)

where cj is the nearest basis unit to the unit ci. All basis units use a same
variance parameter.

4.2 Experiment Settings

We prepare three training data set which are shown in Fig.3. In each sub figure,
’X’ marked points mean the given training data. We used them as the training
data for NGnet and the proposal method.

Fig.3(a) shows the normal training data set. In this data set, the training data
are given for the whole region. This data set is used by our team TokyoTechSFC
in the RoboCup2006 Soccer Simulation League and our team won the 4th place.
Fig.3(b) shows the biased training data set. In this biased training data set,
several training data are removed from Fig.3(a) and we set the big difference
of the density between the field middle area and the penalty area. Fig.3(b)
shows the minimum training data set. Almost all training data are removed
from Fig.3(b). This is the minimum training data set for the simulated soccer
domain.

We developed a simulated soccer team that uses both methods and played
games against the fixed team. As an opponent team, we use UvA Trilearn 20041

which participated RoboCup2004 and was ranked 7th. For each training data
set, one half match2 is played 50 times respectively.

4.3 Results

Table 1 and 2 show the statistics data extracted from log files. Table 1 shows
big difference in the average conceded goal between NGnet and the proposal
1 http://www.science.uva.nl/˜jellekok/robocup/
2 One half is about 3000 cycles.
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Table 1. This table shows the average scored goal and the average conceded goal. The
values in the parenthesis mean the standard deviation for each average value.

Goal Scored Goal Conceded

NGnet Proposal method NGnet Proposal method

All 0.2(0.4) 0.08(0.27) 0.98(0.89) 0.76(0.9)
Biased 0.24(0.52) 0.06(0.22) 1.76(1.24) 0.6(0.74)

Minimum 0.02(0.14) 0.02(0.14) 3.7(1.97) 3.16(1.67)

Table 2. This table shows the average number of successful passes, and the aver-
age number of successful intercepts. The values in the parenthesis mean the standard
deviation for each average value.

Successful Pass Successful Intercept

NGnet Proposal method NGnet Proposal method

All 99.06(19.08) 110.6(18.79) 20.2(5.06) 17.18(6.06)
Biased 67.68(15.07) 91.44(21.35) 18.8(5.52) 19.32(5.29)

Minimum 83.86(19.1) 84.3(18.48) 12.06(4.17) 14.5(5.21)

method with the biased data set. And Table 2 shows that the average num-
ber of successful pass becomes minimum in the case of NGnet with the biased
data set.

We guess this is because the positions acquired by NGnet with the biased
data set has the unique characteristic. When agents uses NGnet with the biased
data set, they do not move so much in the field middle area. Even if a teammate
agent has the ball, other agents do not move according to the ball move. So,
the ball owner agents might not be able to find tha pass courses. On the other
hand, in the case of NGnet with all data and minimum data set or the proposal
method with any data set, the acquired positions show the smooth move in the
whole field area. These characteristic are caused by the variance parameter of
NGnet.

These results shows that the density of the training data significantly affects
the positioning characteristic of NGnet. As a result, the performance of the team
is also easily affected by that characteristic. This means that it is difficult to
tune the variance parameter of each basis function unit because the positioning
characteristic of NGnet depends on the variance parameter. Therefore, we can
say that it is necessary to prepare the uniformly distributed basis function units
for NGnet in order to get the stable team performanc, and the proposal method
is robust to uneven sample distribution so that we can easily to maintain the
mapping.

5 Conclusion and Future Directions

Although the statistics data from the experiment may not show the meaning-
ful quantitative result, some criteria show the important characteristic of each
method.
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We can say that our proposal method has many advantages obviously. How-
ever, the proposal method has the following disadvantages:

– The proposal method needs to store all training data. So, it requires many
memories.

– The proposal method requires the high cost to keep the consistency of the
training data. If one training data is modified, the near training data may
be also required to modify.

We plan to develop the method to adjust the training data automatically in
order to reduce the management cost of the training data set. At least, we need
the method to help us to find the inconsistent training data. And also, we should
consider about the multiple dimensional input and output. Now, our proposal
method can handle only two dimensional input and output. If we can handle
other agents’ positions as an input and the other decision making parameters as
an output, they will be very useful. We have to consider about the method to
compress the dimension or to overlap the information.
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Abstract. Mobile robots can benefit from machine learning approaches
for improving their behaviors in performing complex activities. In re-
cent years, these techniques have been used to find optimal parameter
sets for many behaviors. In particular, layered learning has been pro-
posed to improve learning rate in robot learning tasks. In this paper,
we consider a layered learning approach for learning optimal parameters
of basic control routines, behaviours and strategy selection. We com-
pare three different methods in the different layers: genetic algorithm,
Nelder-Mead, and policy gradient. Moreover, we study how to use a 3D
simulator for speeding up robot learning. The results of our experimen-
tal work on AIBO robots are useful not only to state differences and
similarities between different robot learning approaches used within the
layered learning framework, but also to evaluate a more effective learning
methodology that makes use of a simulator.

1 Introduction

In order for robots to be useful for many real-world applications, they must be
able to effectively perform complex tasks. For this purpose, a popular research
activity is the annual RoboCup soccer competition1. In this domain, the robot
should be able to respond to changes in its surroundings by adapting both its low-
level skills (e.g., the walking style) and the higher-level skills (e.g., the behaviour)
which depend on them. Firstly, creating effective motion for walking and kicking
the ball is a challenging task, since there are many parameters to be set, and
since successful motions strongly depend on many factors, including: playing
surface, robot hardware, and game situation. In recent years, machine learning
techniques have been used to find optimal parameter sets. Secondly, in Robocup
matches, the correct choice of the best behaviours required to accomplish a
certain task (e.g., to score a goal) is fundamental for success. Machine learning
techniques have been used in this field as well, in order to adapt the behaviours
to the given game situation.

1 Here, we focus on the RoboCup Four-Legged league (see www.tzi.de/4legged/).

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 385–392, 2008.
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Indeed, robot learning has been used both for fine-tuning of the parameters
used by the low level algorithms – parameter learning – and for finding the opti-
mal composition of simple behaviors for accomplishing a certain task – behavior
learning. In the first class, an important application area is robot motion control,
such as gait optimization for legged robots. For example, a Genetic Algorithm
has been used for optimization of the vector of quadruped walk parameters in [3].
Kohl and Stone [6], empirically compared four machine learning algorithms for
quadruped walk optimization. Parameter learning has proved very effective for
improving other motion control tasks, such as grasping. This task is achieved
in [5] by applying the layered learning paradigm [9]: grasping parameters rely
on previously learned walk parameters.

On the other hand, researchers proved the utility of behavior learning for
improving high level tasks, e.g. navigation [4], path-planning, and multi-robot
cooperation [8]. To our knowledge, parameter and behaviour learning have rarely
been joined in a single framework. In [1], this has been done by gradually devel-
oping cognitive capabilities, starting from abilities for detecting and recognizing
objects, up to task execution.

Besides, experimental comparison of different learning methodologies has been
rarely addressed. Here, we focus on learning a task for a AIBO soccer robot.
Behavior learning and parameter learning are integrated, and we present an
experimental evaluation of a layered learning approach [9] using three different
learning techniques: genetic algorithm (GA), Nelder-Mead (NM), and policy
gradient (PG). Finally, we study how to use a 3D simulator for speeding up
robot learning. The results of our experimental work can be summarized as
follows: 1) layered learning is very effective in the complex scenario considered
in this paper; 2) using a 3D simulator can speed up the learning process on real
robots; 3) the learned low-level parameters are strongly related to the desired
behavior. We have successfully experimented the presented learning methodology
in preparation of RoboCup 2006, showing a notable improvement of performance
of the robots in our team.

2 Problem Definition

In this paper, we consider learning a complex task as a composition of different
behaviors. More specifically, we consider situations in which a task T can be ac-
complished by applying different strategies, where each strategy is a composition
of different behaviors. Each behavior B is characterized by a set of parameters
ΘB = {θ1, . . . , θkB}. Notice that a behavior can be present in different strategies
and possibly requires the definition of different parameters depending on the
situation in which it is used. The learning problem is thus twofold: on one hand,
behavior learning is needed to select the best strategy, i.e., the best composition
of basic behaviors; on the other hand, each behavior needs fine tuning of each
parameter. In the next section we present a learning methodology that integrates
behavior and parameter learning for a complex robot task.
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To make this problem more clear we will present the application example in
which we have tested our method. Consider a robot playing soccer within the
RoboCup Four-Legged league competitions. One of the main tasks to be accom-
plished is to approach the ball and kick it to the opponent goal. This is a complex
task that requires the integration of different behaviors in different ways (i.e.,
strategies). Besides, each behavior has several parameters to be tuned: walking
gait parameters, kick parameters, etc. Learning such a complex task requires to
define a strategy (as a combination of behaviors) and tune the parameters of the
behaviors involved in such a strategy.

3 System Description

In this section, we describe learning the attacking task for a soccer robot in the
Four-Legged League.

3.1 Behaviors and Parameters

For learning the attacking task, a set of six behaviors BP = {B1, . . . , B6} has
been considered. These behaviors (see Figure 1) can be classified in three subsets:

– ball approaching behaviors: B1: fast ball approach (the path length is min-
imized by an omnidirectional walk), B2: aligning ball approach (while the
robot approaches the ball, its heading is oriented towards the goal);

– ball carrying behaviors (aimed at grasping the ball with the robot chin, and
orienting the robot heading towards the opponent goal): B3: rotational ball
carrying (alignment is achieved by pure rotation), B4: rototranslational ball
carrying (alignment is achieved by a rototranslational movement);

– ball kicking behaviors (realized by direct kinematics control of the 15 joint
positions): B5: head straight kick (the robot ‘dives’ on the ball and hits it
with the head), B6: head spanning kick (the robot ‘dives’ on the ball and
hits it with varying head pan).

A strategy is a combination of behaviors. Here, we consider only a simple form
of behavior composition: chaining. Thus, we consider strategies as sequences of
behaviors. For example, {B1; B4; B5} is a possible strategy for the attacking
task. Each behavior B is characterized by a set of parameters ΘB. Speed and

Fig. 1. The six behaviours that can be used in the attacking task



388 A. Cherubini, F. Giannone, and L. Iocchi

stability of the ball approach are mainly characterized by the eleven walking
gait parameters ΘWG, which define the kinematic characteristics of the walk.
The four ball carrying parameters ΘBC characterize the way the robot slows
down and eventually stops near the ball. These parameters also influence the
quality of ball control in attacking strategies with no ball carrying (e.g., strategy
{B1; B5}). Finally,the robot kicks are generated by a sequence of fixed joint
positions, characterized by nine ball kicking parameters ΘBK .

3.2 Learning to Attack

Here, we present the optimization problem that must be solved in order to
improve the attacker performance, based on the above system characteristics. As
aforementioned, we present a learning approach that allows for the concurrent
search of optimal behaviors and optimal parameters. The first issue deserves
some clarification. We represent the attacker strategy Pi with a string of three
integers, instead of symbolic expressions. We use the coding function:

c : Pi → {φ1 φ2 φ3} ∈ Z3 i = 1, . . . , 12

such that: φ1 indicates the ball approaching behaviour used in strategy Pi (1 for
B1, or 2 for B2), φ2 the ball carrying behaviour (1 for B3, 2 for B4, 0 for no ball
carrying), and φ3 the ball kicking behaviour (1 for B5, 2 for B6). For example,
the strategy {B1; B4; B5} is coded with the string {122}.

With this approach, the search for the optimal composition of simple behaviors
amounts to a parameter optimization problem in the discrete set Sφ = {1, 2} ×
{0, 1, 2} × {1, 2} ⊂ Z3. In practice, since we consider parameter and behavior
learning together, a candidate solution of the optimization problem is:

X = [θWG,1 . . . θWG,11 θBC,1 . . . θBC,4 θBK,1 . . . θBK,9 φ1 φ2 φ3]T ∈ R24 × Sφ

The very large dimensions of the search space, and the system characteristics,
suggest the use of the layered learning paradigm [9] for optimizing this prob-
lem. In fact, given a hierarchical task decomposition, layered learning allows for
learning at each level of the hierarchy, with learning at each level directly affect-
ing learning at the next higher level. The incremental learning approach that
we use is inspired by the layered learning paradigm; however, in contrast with
classic layered learning, we utilize the same learning method for each layer of
the hierarchy. Specifically, we can decompose optimization of the attacker task
in the following four optimization subtasks (layers):

– L1: find X1,opt = [θWG,1 . . . θWG,11]Topt ∈ R11 for ‘best’ walk;
– L2: find X2,opt = [θBC,1 . . . θBC,4]Topt ∈ R4 for ‘best’ ball carrying, given

X1,opt found by L1;
– L3: find X3,opt = [θBK,1 . . . θBK,9]Topt ∈ R9 for ‘best’ ball kicking, given

X1,opt and X2,opt found by L1 and by L2;
– L4: find X4,opt = [φ1 . . . φ3]Topt ∈ Z3 for ‘best’ attacking strategy, given

X1,opt, X2,opt, and X3,opt, found by the three previous layers.
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We note ki the dimension of X i at each level Li (k1 = 11, k2 = 4, k3 = 9,
k4 = 3). The solution can be obtained as:

Xopt = [X1,opt X2,opt X3,opt X4,opt]
T

The appropriate choice of the objective function for optimization is funda-
mental. The function for evaluating the quality of an attacking performance,
must take into account: the quality (speed and precision) of the robot motion
for approaching the ball, the quality of ball carrying, and the quality (power and
precision) of the kick. Hence, we adopt the following objective function:

F (X) = kWGfWG(X) + kBCfBC(X) + kBKfBK(X)

where kWG, kBC , kBK are positive weights indicating the significance desired for
each of the three aspects in the learning process, and fWG, fBC , fBK indicate
respectively the quality of the walking gait, of ball carrying, and of ball kicking.
These functions are derived with heuristics on the robot and ball positions at
various stages of the attacking task.

3.3 Learning Techniques

Our objective is to maximize F (X) in a space of dimension k. This is not
trivial, since F (X) is ‘black box’, analytical computation of its derivatives is
impossible, and all the parameters are box-constrained due to the physical char-
acteristics of the system (we note : Δj the range size for each θj). Hence,
conventional derivative-based optimization methods cannot be utilized, and con-
vergence analysis of a method is impossible. The selected approach must handle
non differentiable search space, have high convergence rate, and be resistent to
noise in F (X). Many algorithms possess these characteristics. In particular, we
will focus on three different machine learning algorithms: Genetic Algorithms,
Nelder-Mead Simplex Method, and Policy Gradient.

In Genetic algorithms [2], a population of q parameter sets (individuals) is
used to find a solution for the optimization problem. To evolve a new population
from the tested one, the qe best individuals are preserved (elitism) and the
remaining individuals are generated by applying crossover (qc individuals) and
mutation (qm individuals) operators.

The Nelder-Mead simplex algorithm [7] explores a search space of dimension
k by moving a simplex of v = k + 1 vertices via four possible geometrical trans-
formations: reflection, expansion, contraction, and shrinkage. From an initial
parameter set 0X, the other lX vertices (l = 1, . . . , k) of the first simplex are
generated as: lX =0 X + [0, . . . ,±ζl, . . . , 0]T .

The Policy Gradient algorithm has been used for robot learning in [6]. From an
initial parameter set 0X, p randomly generated policies mX (m = 1, . . . , p), are
evaluated, such that: mX =0 X + [ρ1, . . . , ρk]T , and each ρj is chosen randomly
in the set {+εj, 0,−εj}. Each mX is grouped into one of three sets for each j:
S+ε,j, S0,j or S−ε,j depending on the variation applied to its jth parameter. −εj .
The average objective functions F̄+ε,j , F̄0,j , and F̄−ε,j are computed for S+ε,j ,



390 A. Cherubini, F. Giannone, and L. Iocchi

S0,j and S−ε,j. These are used to estimate the gradient, which is then scaled by
a step-size η, and added to 0X, to begin the next iteration.

4 Experimental Results

Here, we report the experimental results obtained by applying the proposed
learning methodology in the described robot soccer scenario. More specifically,
we comment on three results: 1) the effectiveness of the incremental approach;
2) the comparison among the three learning methods 3) the effectiveness of
using a 3D simulator for speeding up the learning process. We have executed the
incremental learning approach presented in the previous section, but without
considering the fourth layer L4, since this would require additional input to the
system. In fact, selecting the best strategy depends on other variables, such as the
position of the robot and of the ball with respect to the target goal, the position
of other robots in the field, etc. For layer L4 it is necessary to learn a function
that maps the current situation with a suitable strategy. This aspect needs to
be further investigated and it is beyond the scope of this paper. In practice,
we applied incremental learning, focused on layers L1 to L3, for optimizing the
strategy P1 = {B1; B5}, i.e., the robot approaches the ball as fast as possible,
and kicks it forward, without grasping it, with fixed head pan. Learning this task
has been initially developed and configured within the 3D AIBO simulator [10]
embedded in USARSim2, before experimentation on the real robot.

Let us briefly outline the configurations of the three learning algorithms. For
the genetic algorithm, we use: q = 10, qe = 1, qc = 6, qm = 3. Selection of
individuals from the original population is based on the popular roulette wheel
scheme, and mutation is obtained by altering the jth parameter with an offset
chosen randomly in the set [−0.2Δj, +0.2Δj]. For the Nelder-Mead algorithm, at
each layer Li: v = ki +1, and ζl = ±0.2Δj, with the sign of ζl chosen randomly.
For the policy gradient, we use for the three layers: p1 = 8, p2 = 4, p3 = 6,
εj = 0.1 Δj , η = 3. The same initial parameter set 0X is used for starting each
learning technique. Since there is significant noise in each experiment, each set of
parameters is evaluated three times, and the resulting fitness evaluated for that
set, is computed by averaging over the three experiments. For each layer, and
each learning technique, we terminate learning after 10 ki evaluations (e.g. for
L1, 110 evaluations, i.e., 330 experiments). We choose to use the same amount
of learning time, since this is usually a given specification in learning problems.

The results of incremental learning are shown in Fig. 2(a): Nelder-Mead
slightly outperforms GA and PG. A similar plot is shown in Fig. 2(b), where we
ran the same number of evaluations by learning all 24 parameters at the same
time. Comparison between the two plots confirms the quality of the incremental
approach: for instance, for the GA, the final fitness obtained by the incremental
approach is 34% higher than that obtained by learning all parameters together.

Other experiments were carried out to show how the optimal low-level param-
eters are strongly related to the desired behavior. To emphasize this aspect, we
2 usarsim.sourceforge.net
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Fig. 2. Fitness values at each evaluation: (a) incremental learning with USARSim, (b)
learning all parameters with USARSim, (c) incremental learning with AIBO (GA solid,
NM dashed, PG dotted) (d) comparing GA for L1: with initial population derived from
USARSim (grey), and with random initial population (black)

used the same learning configuration used for optimizing strategy P1, to optimize
strategy P2 = {B1; B3; B5} (the robot approaches the ball as fast as possible,
rotates while grasping it, and kicks it with fixed head pan). This experiment was
carried out with the genetic algorithm, in USARSim: starting from the optimal
walking gait parameters X1,opt learned for the previous strategy, we proceeded
with the other two levels to derive X2,opt and X3,opt. Comparison between the
optima learned for P1 and P2 showed major differences. Specifically, for P2,
the robot must slow down farther away from the ball (parameters θBC,1 and
θBC,2 are different in the two cases) and the head movement for kicking the ball
(which in P2 has been grasped) is different and depends on parameters θBK,7

and θBK,8. These results outline the dependency of the behavior parameter sets
on the chosen strategy.

After having configured the algorithm for learning strategy P1 in USARSim,
we ported it on the real robot. The initial parameter set for each technique is
the set derived at the end of simulator optimization. This time, for each layer,
and each learning technique, we terminate learning after 5 ki evaluations. The
results of the incremental learning algorithm are shown in Fig. 2(c). On AIBO,
policy gradient slightly outperforms the two other approaches.

To emphasize how the use of a 3D simulator speeds up the learning process
on real robots, we ran another experiment where the GA was used to learn L1

for the same strategy P1, starting from a random population, different from the
one derived at the end of USARSim optimization. The results of this experiment
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are shown in Fig. 2(d), where the fitness of GA walking gait learning starting
from different populations are plotted: the figure clearly shows the advantage of
the simulator for deriving the GA initial population.

5 Conclusions

In this paper we presented a layered-like approach for learning optimal parame-
ters, and strategy selection. We compared three different methods in the differ-
ent layers: genetic algorithm, Nelder-Mead, and policy gradient. Moreover, we
showed how the use of a 3D simulator speeds up robot learning. The proposed
learning methodology has been applied to the soccer attacking task, on both
simulated and real robots, and it has shown a notable improvement in the per-
formance of the robot basic behaviours. The main results of the experiments are:
the utility of the layered approach for this complex scenario, and the effective-
ness of the 3D simulator for configuring the learning algorithms before porting
on the robot. Incremental learning has been executed without considering the
strategy selection layer. In fact, this depends on the ‘game situation’ (e.g., posi-
tions of robot and ball with respect to the goal). Learning a function that maps
the game situation with a suitable strategy will be the object of further work.
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Abstract. On the way to the big goal - the game against the human
world champion on a real soccer field - the configuration of the soccer
fields in RoboCup has changed during the last years. There are two main
modification trends: The fields get larger and the number of artificial
landmarks around the fields decreases. The result is that a lot of the
methods for self-localization developed during the last years do not work
in the new scenarios without modifications. This holds especially for
robots with a limited range of view as the probability for a robot to
detect a landmark inside its viewing angle is significantly lower than on
the old fields. On the other hand the robots have more space to play
and do not collide as often as on the small fields. Thus the robots have
a better idea of the courses they cover (odometry has higher reliability).
This paper shows a method for self-localization that is based on bearings
to horizontal landmarks and the knowledge about the robots movement
between the observation of the features.

Keywords: Self-Localization, Constraints, Aibo, Bearing-Only.

1 Introduction

Localization is one of the most important challenges for a mobile robot. There
are a lot of researchers developing new methods each year. In the last years the
Monte-Carlo Localization has been the standard approach to the localization
problem. A lot of improvements have been suggested to overcome limitations in
the processing power and to address the limited angle of view of robot that are
not equipped with omni-vision.

There are a lot of suggested improvements to the sensor model. Sensor-
resetting reseeds new position templates obtained from observations [1] and there
are improvements that build short-time history of observations to create more
accurate position templates [2]. Other approaches try to incorporate negative
information [3]. A lot of improvements has also been suggested for the motion
model for example using the detection of collisions.

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 393–400, 2008.
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394 M. Jüngel and M. Risler

This work was motivated by the experiences we collected with the localization
method we use in RoboCup for our Aibo robots. We use a standard Monte-
Carlo localization as described in [4,5,6]. As with the latest rule changes in the
RoboCup Sony Four-Legged League besides the goals there are only two artificial
landmarks on the field, the distance-based sensor resetting method does not give
the desired results any longer. Size-based distance measurements give a too large
error when the objects are too far away.

In this paper we provide a bearing-only method for localization that incor-
porates odometry and can be used as a template generator for MonteCarlo-
Localization. This paper shows an approach to bearing-only self-localization that
incorporates odometry in a new way. Section 2 describes the method in detail.
Section 3 describes the experiments we performed with our Aibo robots.

2 Bearing-Only Localization Using Odometry

In this section we show a method that allows a robot to localize based on two in-
puts. The first input are observations. The vector α = (αl1 , αl2 , ..., αln) contains
the measured bearings to the landmarks l1, l2, ..., ln. These angles were measures
at different times t1, t2, ..., tn. The second input is the knowledge about the mo-
tion of the robot. The vector u = (u1, u2, ..., un) contains the robot’s odometry
at times t1, t2, ..., tn.

A robot can obtain these vectors α and u by storing its observations and the
according odometry in a buffer. Figure 1 shows a visualization of such a buffer.

In this section we define a function F (x, y, α, u) which describes the likelihood
for the robot of being at position (x,y) on the field. This function can be used

1

2

6

5

4

3

Fig. 1. Odometry and horizontal bearings. Top: Five images with six horizontal bear-
ings (1: right goal post, 2: left goal post, 3 and 4: center landmarks, 5 and 6 goal posts)
Bottom: Gray arrows show the robots odometry at different times, bold arrows show
the odometry associated with the horizontal bearings.
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to calculate a robot position (the maximum of the function) or to generate
templates for Monte-Carlo localization.

2.1 Localization with Three Simultaneously Seen Horizontal
Bearings

In this subsection we show two methods to determine the position of the robot
when the robot is not moving. The first one uses well-known simple geometry,
the second one is a constraint-based approach.

Using simple geometry. When a robot perceives three landmarks without
moving between the observations, the calculation of the position is straightfor-
ward. With the known position of the landmarks a circle can be constructed for
each pair of bearings. The radius of the circle is determined by the difference
of the angles and the distance between the landmarks. The intersection point of
the circles is the only possible position for the robot.

Pose estimation using angular constraints. When the position is deter-
mined by intersecting circles, there is nothing known about the influence of
errors in the measurement of the bearings. This influence can be determined
using a constraint-based approach. A single observation of a landmark l at a
certain relative angle constrains the angle ϑl the robot can have at a certain
position (x, y) on the field. This angle is given by

ϑl(x, y, αl, xl, yl) = arctan
(

yl − y

xl − x

)
− αl

where (xl, yl) is the position of the landmark on the field and αl is the relative
angle to the landmark. When two bearings to two landmarks are given, the
function

Dl1,l2(x, y) = (ϑl1(x, y) − ϑl2(x, y))2

describes the likelihood for being at position (x, y). The shape of the function
represents how good a certain pair of landmarks is suited to constrain the po-
sition on the field. For example a plateau in this function means that a small
error in an observation leads to a large error in the resulting position.

The function Dl1,l2(x, y) introduced above describes for each position (x, y)
how good the angles ϑl1 and ϑl2 obtained from two different horizontal bearings
match. To use more than two observations αl1 , αl2 , ..., αln , we can calculate the
average angle of all resulting ϑl1 , ϑl2 , ..., ϑln for each position (x, y) using this
formula

ϑaverage(x, y) = arctan

⎛⎜⎜⎝
n∑

i=1

sin(ϑli(x, y))

n∑
i=1

cos(ϑli(x, y))

⎞⎟⎟⎠
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)b)a

Fig. 2. Similarity of angles. a) The thin lines show the angles ϑl(x, y) for three different
observations. The bold line shows the average angle. The robot’s position is constrained
to the positions where the angles are similar. b) Function G(x, y) displayed as height
map. White: small difference between the angles, black: large difference between the
angles. The red circles are obtained from the method using simple geometry described
above.

Figure 2 a) shows function ϑl(x, y) for three different landmarks and the resulting
average angle. Using ϑaverage(x, y) we can define the function

G(x, y) =
n∑

i=1

(ϑaverage(x, y) − ϑli(x, y))2

which describes how similar the angles ϑl are. This function has its maximum at
the position (x,y) that best fits with all observations αl1 , αl2 , ..., αln . Furthermore
the function provides an estimation of the position error for known errors in the
observation. Figure 2 b) shows this function for three observations.

2.2 Incorporating Odometry

To incorporate odometry we define a function υl(x, y, αl, Δodometryl
, xl, yl) which

determines the angle of the robot at position (x, y) when the landmark l was seen
at angle αl and the robot moved Δodometry(Δx, Δy, Δφ) since the observation.
Figure 3a) illustrates these parameters and the resulting angle υl. To determine
υl we define a triangle with its corners at the position (xl, yl) of the landmark l
(angle β), at the position (x, y) (angle γ) and at the position (x0, y0) where the
observation was taken (angle δ). Figure 3b) shows this triangle. Note that in this
triangle (xl, yl) and (x, y) are fixed. The position of (x0, y0) can be calculated
using the angle ω from (x, y) to (xl, yl) and the distance Δd the robot walked:

x0 = x + cos(ω + γ) · Δd; y0 = y + sin(ω + γ) · Δd

where γ follows using sine rule:

γ = π − δ − β

= π − αl − arctan
(

Δy

Δx

)
− arcsin

(
Δd · sin(δ)

dl

)
.
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Fig. 3. Bearing + odometry define the robots angle for a given position (x0, y0)

With the known position (x0, y0) follows

υl(x, y, αl, Δodometryl
, xl, yl) = ϑ(x0, y0) + Δφ.

When the robot is at position (x, y), has seen the landmark l at angle αl some
time ago, and has moved by Δodmetryl

since that observation, the function υl

gives the angle the robot must have. Similar to the function G from section 2.1
we define a function

F (x, y, α, u) =
n∑

i=1

(υaverage(x, y) − υli(x, y))2

which describes the likelihood of the robot for being at position (x, y). This
function can incorporate an arbitrary number of observations from the past and
does not need any internal representation of the position that is updated by
alternating sensor and motion updates. The selected sensor information α and
the according motion information u are processed at once.

2.3 Calculating the Robot Pose

The maximum of function F given in the last section is the position of the robot.
The rotation of the robot can immediately be calculated using υaverage or the an-
gle υl0 that is defined by the last observation. When a fast and rough estimation
of the robot pose is wanted, the maximum can be determined by an iteration
through the domain of the function. When a more accurate estimation is wanted
it can be obtained by means of standard methods as Gradient Descent with only
a few iterations. Note that such methods usually find only local maxima of the
function.

2.4 Generating Templates for Monte-Carlo Localization

Often there is more information than the horizontal bearings to unique land-
marks to determine the pose of the robot. Especially when there is ambiguous
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Fig. 4. The Function F (x, y): white - high likelihood, black - low likelihood, Arrows:
position templates that can be used for sensor resetting in Monte-Carlo localization -
note that usually only a small number of these templates will be used. Small circles: the
landmarks that were used for position calculation. Large circle: the robot pose (known
from the simulation). Path: the way the robot walked.

information like distances to walls or field lines a localization method that is
able to track multiple hypotheses might be preferred. In such a case the func-
tion F described in section 2.2 can be used to create template poses for sensor
resetting. Which is in particular useful when only a small number of particles
can be used due to computational limitations. To obtain a fixed number of
samples you can normalize F such that all values are between 0 and 1 using
function F ′ := 1/(1 + F 2) and create a template pose at each position (x, y)
with random() < F ′(x, y)n. Where n is a parameter to adjust how much the
sample poses can deviate from the maximum. Figure 4 shows templates obtained
from function F .

3 Experimental Results

We developed the bearing-only localization approach as a replacement of the
distance based sample template generation that we use for our Monte-Carlo self
localization [7,8,9]. The old method was not usable any longer as with the 2007
rule change in the Sony Four Legged league two more beacons were removed and
thus there are less beacons and the beacons have a higher average distance to
the robots.

Thus we added the method described in section 2.2 as a sample template
generator in a way described in section 2.4. The particle filter uses 200 particles.

To measure the quality of our improvements we steered a real robot via re-
mote control over the soccer field in our lab performing an s-like shape on the
field. The head of the robot performed the typical Aibo scan motion which looks
around searching for the ball and the landmarks. During this process log data
was recorded containing camera images, head joint values, odometry data, and
ground truth robot positions obtained by a ceiling mounted camera. Such log-
files can be played back off-line to feed our algorithms with data. The angles to
the landmarks needed for our location approach were extracted from images and
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)b)a

)c)c

Fig. 5. blue line: ground truth robot position, red line: result of self localization a,b)
no sample templates used. c,d) sample templates used.

joint sensor data. We used the recorded log data to compare different parame-
terizations of the approach.

Figure 5 shows a visualization of the path the robot walked and the pathes
obtained by our method. We also tested the influence the number of samples
used for reseeding has. Table 1 gives the results.

The result of the experiments is that without template generation there were
random jumps and a large deviation from the ground truth robot pose. With
sample template generation (using one sample per frame) the resulting trajec-
tories were smoother and closer to the ground truth.

Table 1. Results of Localization tests. In our experiment the position obtained by the
approach introduced in this paper was compared with the one obtained by the ceiling
camera. The table shows the average distance between the two positions for the whole
run repeated six times. To show how reseeding influences the localization quality we
conducted the experiment with different re-sampling rates (top row). The table shows
that even a single reseeded particle in each frame improves self-localization drastically.
Adding more samples has almost no effect.

num. of reseeded samples 0 1 2 5 10

position error in cm 54.8±21.6 21.7±13.1 19.1±13.0 19.5±12.6 22.4±17.0

position error percentage 9,13% 3,63% 3,18% 3,25% 3,74%
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4 Conclusion

In this paper we presented an approach for bearing-only self-localization incor-
porating odometry. The method does not need an internal representation of the
position estimate which is updated by alternating sensor and motion updates.
The history of observation and motion information (stored in a small buffer) is
processed directly. A big advantage is that no wrong model from the past can
disturb the current pose estimation.

However, we showed that our method also provides good positions for sensor
resetting in the well known Monte-Carlo localization. Tests in simulation and on
a real Aibo robot with ground truth by a ceiling camera showed the robustness
of our approach. Further experiments have to show whether the localization
method can cope with larger errors in odometry caused by strong influence of
opponents in RoboCup games.
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Abstract. According to the expert literature on (human) soccer, e.g., the tactical
behavior of a soccer team should differ significantly with respect to the tactics
and strategy of the opponent team. In the offensive phase the attacking team is
usually able to actively select an appropriate tactic with limited regard to the op-
ponent strategy. In contrast, in the defensive phase the more passive recognition
of tactical patterns of the behavior of the opponent team is crucial for success. In
this paper we present a qualitative, formal, abductive approach, based on a uni-
form representation of soccer tactics that allows to recognize/explain the tactical
and strategical behavior of opponent teams based on past (usually incomplete)
observations.

1 Introduction

The quality and success in human soccer is determined to a large extent by the individ-
ual abilities (high-level as well as low-level) of the acting agents and by the strategical
and tactical abilities on the individual- and team level [9]. Tactics and strategies can be
used in at least two ways. In the offensive phase a team/coach can actively choose an
appropriate tactic while in the defensive phase a team has to recognize the opponents
tactical behavior in order to adopt defensive play. A first attempt to recognize opponent
behavior has been made in [4] which allowed us to detect online rule-based pattern of
behavior. In order to achieve the demanding goal to defeat the human world champion
in 2050 we claim that the recognition of (simple) rules will not be sufficient. Instead the
recognition of more complex pattern in terms of strategies and tactics is required.

According to the expert literature on (human) soccer the tactical behavior of a soccer
team should differ significantly with respect to the tactics and strategy of the opponent
team [9]. In the offensive phase the attacking team is usually able to actively select
an appropriate tactic with limited regard to the opponent strategy. In contrast, in the
defensive phase the more passive recognition of tactical patterns of behavior of the op-
ponent team is crucial for success. E.g., depending on wether one team is playing a
4-4-2- and the other team is playing a 3-4-1-2-strategy the defensive behavior should
differ significantly with respect to the opponents strategy. In the case that the attack-
ing opponent is playing a 3-4-1-2-strategy while the defending team relies on a 4-4-2-
strategy the defending team has to face e.g., overlapping movements, which are typical
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for the offensive phase of the 3-4-1-2-strategy. Without adopting the 4-4-2-strategy the
attacking team has a very good chance e.g., to reach numeric superiority on the wing
sides [9].

In this paper we present an abductive approach based on the basic algorithms of
[5]. Although the original algorithm has been proved to be efficient [5] in contrast
to other abductive approaches, efficiency is still a problem for many practical real
world problems. Although efficiency is essential plan-recognition method should fur-
thermore support configurable, context-dependent (e.g. role dependency) and incremen-
tal recognition.

2 Motivation

In order to apply strategy and tactics from the theory of soccer [9] successfully in the
RoboCup-domain we do not only have to consider the offensive play. Strategy and tactic
is also highly relevant in the defensive phase. The role of strategy changes significantly
depends on whether a team is in the offensive or in the defensive phase. In the offensive
phase a team can actively choose a tactic to a large extent independently of the oppo-
nents strategy1, in contrast in the defense phase a team has to recognize both the more
general strategy as well as the concrete tactic in order to adopt the overall defensive
team behavior (e.g., avoiding a superior number of opponent players on wing (i.e., in
4-4-2)).

Depending on the specific context we are interested in different types of explana-
tions for observed behavior. E.g., the coach is interested in recognizing more general
pattern of behavior in order to adopt the strategy and choose more appropriate tactics.
In contrast, players have a significantly stronger interest in more precise explanation
which allow them (at least) to some extent to predict the opponent behavior. Both types
of observations differ not only with respect to the level of granularity. While the coach
usually relies on a large set of observations on a larger time scale, a player is usually
restricted to a limited set of observations (which belong to the current opponent attack)
and is required to recognize the opponent tactics fast. As a consequence not only a sin-
gle inference is needed but instead a framework of inferences which allow for context
sensitive explanations.

An additional important aspect of plan recognition is the underlying role-dependency.
Depending on the specific role (i.e., left side defender, central attacker, ...) and the con-
text (e.g., defensive phase, final phase of the game, ...) the focus and the level of gran-
ularity of the plan recognition process can differ significantly. E.g., usually a left side
defender is not interested in an exakt prediction (which is usually impossible due to
the non-deterministic nature of the game) but instead in the set of possible future oppo-
nent behaviors at varying levels of granularity, depending his specific capabilities (e.g.,
whether it is reasonable to play offside).

1 Of course, the choice of a specific tactic should be done with respect to the specific strength
and weaknesses of the opponent teams.
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3 Related Work

The generation of explanations of observed events/behavior has gained much interest
within the research community and resulted in various applications like diagnosis [11],
natural language understanding [6] and plan recognition [2]. The methods under con-
sideration vary from probabilistic methods like bayes networks e.g., [1], classification-
based approaches e.g., [3] to the already mentioned logic-based abductive methods e.g.,
[2]. One aspect most of these approaches have in common are the constraints of their
application: most approaches focus on static scenarios with an precise model of behav-
ior (e.g., closed world assumption). A popular exception is the work of Albrecht et al.
[1] which applys probabilistic reasoning to an online-dungeon game but also grounded
on a complete (predefined and also limited) number of actions and valid combinations.
An additional approach that overcomes these limitations at least to some extent is the
work of Intille and Bobick [7] who apply their classification-based approach to the
multi-agent scenario of American Football-domain. Although the American Football-
domain appears to be highly related to the RoboCup-scenario the differences (within
the Intille-approach) are significant. The American football-domain provides a com-
plete, predefined taxonomic playbook which specifies all possible (allowed) patterns of
behavior and therefore allows for classification-based approaches. Additionally, Bobic
et al. are able to use manually generated data without noise. In contrast, in the soccer
domain tactics and strategies describe behavior on much higher level that allows a wide
range of variations that cannot be specified in any detail. Instead, the given observations
have to be assumed to be uncomplete due to sensor limitation.

Abduction has been introduced by C.S. Pierce [12] as a third kind of logic inference
next to induction and deduction and has gained much interest in the late 80’th and early
90’th. Abduction does not rely on complete observations but instead supports to infer
missing knowledge i.e., premisses. The abductive inference process can generally be
decomposed in two steps:

1. generation of all abductive explanation
2. selection of the most appropriate explanation

Several proposals have been made for the time consuming generation process de-
pending on the underlying representation2. A serious problem for the use of abduction
especially in time critical applications like RoboCup is that the generation of abductive
explanations has been proofed to be NP-hard (in the general case) [13]. Nevertheless,
more recently Eiter et al. [5] developed an efficient algorithm that allows to generate
all explanations of positive queries based on a logic horn-clause representation.

4 Abduction-Based Generation of Explanations of Tactical
Behavior

Observations are essential elements for plan recognition. In this approach the necessary
information are recognized actions from a team of soccer players. We use an egocentric,
online version of the approach presented by [10].

2 Abduction does not necessarily have to rely on an logic representation.
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4.1 Generation of Tactical Knowledgebase

Fig. 1. A left-right sidechange of a human soccer
tactic

Our knowledge base is based on the book
of soccer tactics from Lucchesi [9]. The
key assumption which is essential for the
use of abductive reasoning is that the
(logical) implication can be interpreted
not only as an inference from cause to ef-
fect, but also as an inference from effect
to cause3. Following this pattern each
single action within a complex tactical
pattern can be interpreted as the cause
for a possible sequence of successional
actions and may itself be the effect of a
previous action and therefore sequences
of actions are modeled strictly as sequences of implications. The situation depicted in
figure 1 is in the first step described as a sequence of implications (see figure 2) which
is in the second step transfered into a horn representation. Two limitations had to be
considered (1) no cyclic horn theories and (2) no expressions like x → 0 or 1 → x are
allowed4. The resulting horn-clause knowledge base is described in figure 2.

(1) PassPlayer6ToPlayer10 ∧ MovePlayer2ToRightOppMid → RecievePassPlayer10
(2) RecievePassPlayer10 → PassPlayer10ToPlayer7
(3) PassPlayer10ToPlayer7 → RecievePassPlayer7
(4) RecievePassPlayer7 → PassPlayer7ToPlayer2
(5) PassPlayer7ToPlayer2 → RecievePassPlayer2
(6) HaveBallPlayer6 ∧ IsFreePlayer10 → PassPlayer6ToPlayer10
(7) IsFreeRightOppMid → MovePlayer2ToRightOppMid
(8) HaveBallPlayer10 ∧ IsFreePlayer7 → PassPlayer10ToPlayer7
(9) HaveBallPlayer7 ∧ IsFreePlayer2 → PassPlayer7ToPlayer2

Fig. 2. Extracted Implication from the Tactic

4.2 The Basic Algorithm of Eiter and Makino

The basic algorithm can be decomposed into two main steps: (1) calculation of prime
implicants and (2) calculation of abductive explanations5 The first step results in a
knowledge base of prime implicants.

In our example all clauses are also prime implicants. The following generations of
abductive explanations will be done on this representation. The general idea is quite
simple: in the first step the positive request clause σ is used to look up in the conse-
quences of the set of all prime implicants (in the following pi). If σ is found in some

3 It should be mentioned that reasoning from effect to cause is non-monotonic.
4 The first condition is a prerequisite of the algorithm of [5], the latter helps to ensures a consis-

tent knowledge base.
5 For more details please refer to [5].
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prime clause ρ the corresponding antecedents of ρ as annotated as the first solution.
Based on the first (simple) solution the algorithm tries systematically to find a more
fundamental explanation by trying to find a new resolvent between ρ and some differ-
ent clause in the set of pi. Given a new resolvent ρ is found pi is expanded by ρ and the
same procedure is applied to pi’ until no changes occur and therefore all solutions have
been calculated.

4.3 Optimizing the Algorithm of Eiter and Makino

Although the described algorithm has not only been proved to be complete and correct
it also is the only abductive algorithm known to be efficient (non NP-hard). In contrast
to various approaches to the generation of explanations the abductive algorithm is very
robust with respect to redundant actions which is a serious problem in soccer in gen-
eral6. Furthermore, an abductive algorithm can easily be applied to different knowledge
bases at different levels of granularity. Nevertheless, efficiency is still a very serious
problem for the application in a RoboCup-domain7.

In order to improve efficiency various optimizations have been applied. It should
be noted that the following optimizations may not be reasonable in all domains. I.e.,
although the optimized algorithm is (of course) domain-independent the optimizations
can only be applied with certain restrictions. Therefore they are optional with respect
to different domains8.

The complexity of the algorithm is given by O(e * m * n * ‖ϕ‖), whereas e denotes
the number of solutions, m the number of clauses in ϕ and n the number of literals.
The first significant improvement can be achieved by separating the complete knowl-
edge base into different separat knowledge bases. As a matter of consequence, we get
a special knowledge base for counter attack on the right wing, counter attack on in
the center, . . . . This modularisation has an interesting advantage: as assumed in the
motivation (see section2) a player is usually only interested in explanations that leads
to an improved/adopted behavior: E.g., a right wing defender is specially interested in
counter attack on the right wing and not on the left one. The modularisation allows him
to focus on context sensitive, role specific tactic explanations.

Additionally, four different optimizations have been applied:

1. Pre-calculation of prime implicants: Independently of the specific request the ba-
sic algorithm calculates all prime implicants. This process is done before runtime in
our realization and will be uploaded together with the knowledge-base. The level of
improvement is strongly dependent on the complexity of the causal relations and will
lead at least in complex models to significant improvements.

2. Use of additional observations: In most of the cases a player has made different
observations that account to a specific tactic. These observations can be used to improve
the abductive reasoning process by skipping proofs. Since a player has already observed

6 Even if a team is strictly using declarative tactical patterns of behavior, redundant actions result
due to necessary adaptations as a result of unexpected opponent behavior.

7 On a more complex knowledge base the basic algorithm took 21 sec.! As we will see in section
5, with all optimization and with some restrictions the performance can be improved to 22ms.

8 And they are also optional in our implementation.
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an action it is not necessary to find out under which conditions the observation is/was
true.

3. Skipping satisfiability-test: The described handling of observations has an addi-
tional interesting side effect: In the classic abductive approach new observations are
expanded in the knowledge base. In the case of false observations this may lead to
inconsistency. In order to avoid to an inconsistent knowledge base a satisfiability-test
would be needed. But since observation are never expanded in the knowledge base the
satisfiability-test can be skipped in our case.

4. Pre-calculation of possible solutions: A static knowledge base offers additional
advantages: it allows the pre-calculation of all possible solutions! A possible disadvan-
tage can be the increase in memory usage which is minimal in this domain due to the
modularisation of the knowledge base.

In addition to the improvements in efficiency the basic algorithm had to be adopted in
order to increase robustness. Although the tactical patterns described in Lucchesi [9] are
strictly associated with specific tactical roles these assumption does rarely hold in the
RoboCup-domain. Therefore we provided the abductive algorithm with a flexible role
association method. The use of this method allows to detect tactical behavior indepen-
dently from specific player numbers or roles and increases the robustness significantly.
The obvious drawback is a decrease in efficiency since all player-number configurations
have to be considered in the role assignment. The results of our extentions are described
in the following section.

5 Experiments and Preliminary Results

Before we tried to integrate the modified algorithm in our 3D-team we evaluated the
efficiency in different scenarios. In the first test scenario described in table 1 we wanted
to evaluate the effect of pre-calculated solutions under (1) the varying condition of
request complexity: simple vs. complex and (2) under varying goal: whether the agent
wants to know if a plan is possible at all or whether he wants to get a list of all possible
(opponent-) plans. The request complexity is simply changed by the action selection.
In the case we observe an action that appends very late in a possible plan, the algorithm
will find significant more solutions than in the inverse case. In the following tests we
used 26 different plans in each case.

The table 1 presents some interesting results. First, the calculation whether a single
plan is possible is highly efficient and can be done in 4,7 ms to 10,5 ms with respect to

Table 1. Finds all solution and search all plans with a possible solutions

Test 1 with Pre-Calculation without Pre-Calculation
simp. Query komp. Query simpl. Query komp. Query

all Time 62,8 ms 55,7 ms 69,3 ms 74,2 ms
∅ Time for one Plan 4,7 ms 4,5 ms 6,3 ms 10,5 ms
processed Plans 4 P. 3 P. 4 P. 3 P.
∅ compute Possible Plans 44,2 ms 42 ms 43,8 ms 42,2 ms
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Table 2. Used cycles in 2D-league, watch a game with a trainer-agent in 3d-league

iterativ Test
all Queries Queries with Solutions

min max ∅ ∅ over Tests min max ∅ ∅ over Tests
P28 2 7 4,66 0,6 22,6 2 7 4,66 0,6 22,6
P53 0 4 1,06 6 182,2 1 4 2,62 6 55,8
P99 0 7 2,24 1,2 49,2 1 7 3,96 1 24,8
P130 0 6 2,6 0,6 53,4 2 6 4,6 0,2 16,6

the specific conditions. Interestingly, the pre-calculation of results is significantly more
efficient but interestingly the difference is surprisingly small. Two main reasons can be
found: (1) the complexity of our tactical model is quite low (in terms the capability
of the algorithm). The efficiency decreases in the case of no pre-calculations only for
complex requests. (2) The modularisation of the knowledge base appears to be highly
efficient. In the case that all possible plans should be calculated (which represents the
case of non-modularisation) the run-time requirements are significant higher, but is still
efficient enough to be used e.g., in the 3D-simulation league, as it can be seen in table 2.

In table 2 we used a 3D-trainer agent who has been restricted to use at maximum
80ms in order to simulate cycles. In the test the coach was required to detect whether
a single plan is possible and to find all possible solutions. These conditions have been
tested on four different varying plans (P28, P53, P99, P130). The test mainly showed
two important results: (1) The modularisation of the knowledge base provides a basis
for incremental abductive reasoning. The algorithm in our implementation can interrupt
the calculation process at (relative) fixed time steps in order to allow other tasks within
a single cycle (instead using complete cycles). (2) Depending on the specific condition
the algorithm requires at most between 4 to 7 cycles for all solutions. These results can
also be approved under different conditions e.g., used by a 3D- or a 2D-player.

6 Summary and Discussion

The role of strategy and tactic is becoming more and more important especially in the
simulation- and the small-size league. The use of more complex tactics of an offensive
team will require that defensive teams are at least to some extent able to detect the set
of possible opponent tactical patterns in order to coordinate defensive behavior. In this
paper we presented an approach to symbolic plan recognition (more precisely genera-
tion of explanation for opponent behavior) at all relevant stages: from the generation of
qualitative action- and world descriptions based on [8] to the generation of abductive
explanations of these observed behavior. The algorithm of Eiter and Makino [5] has
been adopted to the specific requirements of the RoboCup-domain. We showed that the
adopted algorithm can efficiently be used for explanation generation. Furthermore, the
algorithm can be used in an incremental fashion (which is especially useful for the sim-
ulation leagues). An additional positive characteristic is the robustness with respect to
redundant/false observations/actions. The modularisation of the knowledge base allows
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for role- and context sensitive requests but does not prohibit the generation of complete
solutions, i.e., without respect to role and context e.g., for the trainer.

Besides the application of the modified algorithm in different domains the hypothe-
ses generation is still an open task. Although we claim that it will be sufficient in many
situations to identity possible tactical behavior (with respect to role and context) it is
clear that there also exits situations where we would like to find a single prediction, i.e.,
the selection of a single hypothesis out of the set of possible explanations. Various solu-
tions may be considered, varying from probabilistic to symbolic approaches proposed
in the abduction community [11].
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Abstract. Decision making in complex, multi agent and dynamic environments 
such as Rescue Simulation is a challenging problem in Artificial Intelligence. 
Uncertainty, noisy input data and stochastic behavior which is a common 
difficulty of real time environment makes decision making more complicated in 
such environments. Our approach to solve the bottleneck of dynamicity and 
variety of conditions in such situations is reinforcement learning. Classic 
reinforcement learning methods usually work with state and action value 
functions and temporal difference updates. Using function approximation is an 
alternative method to hold state and action value functions directly. Many 
Reinforcement learning methods in continuous action and state spaces 
implement function approximation and TD updates such as TD, LSTD, iLSTD, 
etc. A new approach to online reinforcement learning in continuous action or 
state spaces is presented in this paper which doesn’t work with TD updates. We 
have named it Parametric Reinforcement Learning. This method is utilized in 
Robocup Rescue Simulation / Police Force agent’s decision making process and 
the perfect results of this utilization have been shown in this paper. Our 
simulation results show that this method increases the speed of learning and 
simplicity of use. It has also very low memory usage and very low costing 
computation time. 

Keywords: Reinforcement Learning, Multi Agent Coordination, Decision 
Making. 

1   Introduction 

Rescue simulation environment as a disaster space and a branch of RoboCup 
competitions, models a city after an earthquake occurrence. Its main purpose is to 
provide emergency decisions supported by integration of disaster information, 
prediction, planning, and human interface. In such a multi agent system, the 
coordination between heterogeneous agents is the main problem. 

Reinforcement Learning (RL) is one of the most powerful strategies in dynamic 
and time variant environments. Adaptation with changes according to the results of 
actions is the basic property of RL which is needed in these situations. RL-based 
techniques with an adaptive behavior use interactions with the system to optimize the 
policy used to generate the decisions.  
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RL has many outstanding characteristics in using a feedback to improve the policy in 
discrete spaces. However, in continuous spaces, RL still has some drawbacks in 
adapting to huge state space. The most famous RL methods like Q-learning and Sarsa 
are defined for discrete spaces and their traditional methods are not practical in 
continuous ones [8-10]. 

The best solution in such a complex system is to use learning methods which 
would solve the curse of dimensionality as the main challenge in continuous and large 
discrete spaces. In this paper we represent a simple approach which is very low 
costing in computation time and memory needs.  

In this method, like other on policy RL methods which use function approximation, 
there is a Function Approximator (FA) which presents the Q-values and works as the 
behavior generation policy. After taking an action, using the observed reward, the 
policy (FA) is updated using an innovative update process. 

Our test bed for evaluating the ability of this method was Rescue Simulation. We 
evaluated our learning method by comparing it with our earlier algorithm. The latter 
was our team (MRL) algorithm which we used it in RoboCup2006. The better 
operation of the new system compared with the MRL algorithm -which was the first 
team in RoboCup Bremen 2006- shows the performance of the new RL algorithm. 
We have also won the championship of Robocup 2007 US’s agent competitions using 
this method in Police Force agent’s decision making process. We have named this 
method Parametric Reinforcement Learning (PRL) which is useful in continuous 
spaces and discrete with huge action/state spaces. 

We arranged this paper as follows: In section 2, a summarized review of RL is 
presented in continuous spaces. Section 3 explains about RoboCup and Rescue 
Simulation as the test bed for PRL. The results of this implementation are shown in 
section 4. Finally, section 5 concludes this paper. 

2   Reinforcement Learning in Continuous Spaces  

2.1   Continuous Reinforcement Learning 

In systems having continuous state and action spaces, the value function must operate 
with real-valued variables representing states and actions, which means that it should 
be able to represent the value for infinite states and action pairs. Choosing the value 
function’s structure is a real challenge. RL methods should use memory resources 
efficiently, support learning without too much computational burden and generalize 
the immediate outcome of specific state-action combinations to other regions of the 
state and action spaces [7]. 

Function Approximation provides the estimations of the expected returns of every 
state-action pair for an agent. FAs are useful because they can generalize the expected 
return of state-action pairs that the agent actually experiences to other regions of the 
state-action space. In this way, the agent can estimate the expected return of state-
action pairs that it has never experienced before. 

However, note that a FA may not be able to accurately represent the Q-function for 
the entire state and action space due to its finite resources [6].  
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2.2   Our Approach: Parametric Reinforcement Learning 

2.2.1   Action Evaluation Function (AEF) 
Action Evaluation Function is the implementation of a linear FA in PRL. This is a 
linear combination of some parameters which affect the importance of an action. In 
fact, the aim of the learning is discovering the importance of each parameter 
comparing with other ones. In other words finding a sub-optimal AEF is the objective 

of our learning process. AEF is denoted by ),( ii asV . The importance of parameter 
)( ik sP  is determined by its coefficient kα shown in (1). In this formula n  is the 

number of parameters in AEF which are chosen by the designer of an implementation. 
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2.2.2   Update Process 
After the reward is computed by the “Rewarder”, parameters are changed in order to 
gain better rewards in the similar states i.e. moving AEF toward an optimal policy. 
The update process is described in (2): 
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In this formula γ is the learning factor, and the sign function prevents diverging 
coefficients when the value becomes negative and R is the observed reward. This 
definition for updating is inspired from Takagi-Sugeno coefficients in fuzzy  
Q-learning algorithm. To make this issue more obvious, assume that the value is 
positive, and then every reward should be divided linearly according to the effect of 
the parameter and its related coefficient in the decision i.e. )( ikk sPα . The bigger is 

the )( ikk sPα  the more portion of the reward it takes. 

2.2.3   Descriptions of PRL 
PRL is used in actor-critic configuration as. It is an on-policy Reinforcement Learning 
for continuous action or state spaces and discrete problems with huge action or state 
spaces. On-policy characteristic of PRL leads to a fast learning method. Actions can 
be generated using greedy or ε -soft methods with AEF. 

To initialize the AEF some notifications are required: 

1. Each 
kP  must be normalized to have similar initial effects on the value 

function. Otherwise, from the beginning bigger parameters will effect the 
decisions more and this will make the learning process instable. 

2. Considering an initial knowledge (policy) which is close to the optimal 
policy, will speed up the learning process. The nearer the initial policy to the 
optimal policy, the faster the learning process converges to the desired area.  

Since we do not know about the optimal policy in different problems, it is reasonable 
to initialize AEF with a policy which is not far from any other possible policy. In such 
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a policy, importance of the parameters should be equal and this can be represented 
with each 

kα  set to 1.   

3   RoboCup and Rescue Simulation 

Our main reasons for choosing RoboCup Rescue Simulation as a test bed are:  

1. The ability of evaluating system in its perfect manner is with participating in 
RoboCup competitions. When the algorithm is better than 19 other teams’ 
who were working on AI, there is no doubt about its performance. 

2. RoboCup Rescue is used throughout the international research community as 
a platform for testing aspects of integrated information fusion and agent 
systems.  

3. The RoboCup Rescue scenario is based on real-world scenarios, with 
detailed simulators modeling different parts of the system.  

4. RoboCup Rescue is particularly pertinent to exploring coordination at 
different levels of granularity, and coordination processes which interact 
with each other. It models different scenarios which are well suited to a 
combination of local and global coordination. 

In the rescue simulation environment, a map is simulated 72 hours after an earthquake 
occurrence in 300 time steps. In this simulation the buildings collapse which causes 
some ignitions, obstruct the roads and injure the people. There are three groups of 
rescuers. The fire brigades try to put out the fire, ambulances can rescue injured 
people from damaged buildings and Police Force (PF) agents should clear the blocked 
roads and make them passable for others. 

The quality of these agents operations are evaluated by the score which its formula 
is computed by (3). 

⎟
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THP
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NAH

TBA

UBA
Score  (3) 

Where UBA is the total unburned area, TBA is the total buildings area, NAH is the 
number of alive humanoids, LHP is the summation of living humanoid’s HPs 
(showing the health of people with an integer number) and THP is the total HP of all 
humanoids at the beginning of the simulation.  

4   Simulation Results 

4.1   Definition of the Problem 

As mentioned in chapter 3, Police Force (PF) agent’s goal is to open blockades for 
other agents. At the beginning of the simulation, if fire sites are not reachable for the 
fire brigades because of some blocked roads, the fire will spread out quickly and will 
not be controllable which would lead to worse results. If blocked roads which are 
blocking buried civilian buildings are not opened quickly enough, they will die and 
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the score will decrease. Hence, in maps with heavy blockades the role of the PF agent, 
especially their earliest actions and adapting their strategies to the map condition 
would become too important to the final result of the simulation. Because the agents 
do not know anything about the condition of map at the beginning steps, pre-designed 
decision makers can not solve the problem effectively, so learning during operation 
can help the agents to promote their action selectors. 
The descriptions and assumptions of the PRL method, which we have implemented, 
are presented below: 

Action space is split to areas that we call paths. Paths are made of one or more 
roads having no junctions. In VC map we have about 400 paths in each cycle to 
choose from. 

In this problem, AEF is a function of many parameters. These parameters are from 
three different groups. The first group is distance containing distances of the path to 
the police force, the nearest burning building and the nearest refuge. The second 
group is the buried humans including a number of the civilians, the fire brigades, the 
police forces and the ambulance team agents buried in the buildings connected to the 
path. The third and forth sets are reported blockades and majority factor of the path. 
Reported blockade parameter of a path increases when an agent requests PF agents to 
open it. 

Rewards are only positive and are computed according to the number of agents 
encountered the target, the number of agents that have requested opening of the target 
and some other factors. 

All methods implement the same agents as MRL agents except the PF agents. The 
only difference between 1_α  and PRL methods is the target selection policy of PF, 

and all other factors are exactly the same.  
Greedy behavior generation policy is used. 

4.2   Results 

We tested three different methods in two different maps with heavy blockades and 
many fire sites. Both maps are based on “Virtual City” map with different distribution 
of civilians, agents and ignition points. The first method is the implementation of 
police force agent of the RoboCup Rescue 2006 Bremen’s champion: MRL. The 
second method 1_α  implements no learning with AEF’s 

iα s set to 1 which is the 

initializing policy of AEF in learning methods. The third method is PRL in which γ  

shows the learning speed constant. 
Table 1 shows that police force agents in PRL 05.0=γ , on average will lead to 

better results than MRL and 1_α  police forces. Results show that the big learning 

rates are more risky, they could lead to best results but they also might lead to a poor 
result which again shows the trade-off between the accuracy and the speed of 
learning. Police forces in PRL 05.0=γ  have the most stable behavior of all (smallest 

variance) and PRL 2.0=γ  has the best average score of all. Table 2 shows the same 

facts in a different condition.  
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Table 1. Results for implementing 3 methods in VC map Runs 

MRL 1_α  2.0=γ  05.0=γ  Method 

90.48 93.95 100.76 93.13 

95.78 90.68 89.87 98.20 

95.47 84.69 93.14 97.28 

95.05 96.08 91.26 96.17 

91.20 83.58 98.01 93.86 

93.96 85.12 100.61 98.87 

91.89 96.22 98.41 94.20 

91.71 95.28 99.60 96.10 

90.39 95.71 99.65 93.74 

82.65 83.55 98.83 92.03 

93.07 95.71 92.74 96.80 

93.63 90.46 99.78 94.95 

93.44 90.65 90.71 96.86 

90.52 97.07 91.83 96.32 

92.23 99.05 102.70 93.03 

Scores 

92.09 91.85 96.52 95.43 Mean 

10.03 28.61 19.09 4.16 2σ (Var) 

The mean values for Table 2 are 92.1, 90.7 and 94.8 for MRL, 1_α and 05.0=γ  

respectively. The variance values for the mentioned methods are 4.9, 31.5 and 3.1 and 
these values show the same characteristics that the results from Table 1 show i.e. PRL 
is the most robust and satisfactory method and 1_α is the worst. 

Police Forces work in different areas of the map. Each area has different 
conditions. As it is expectable, learning from different conditions will lead to different 
learned policies. For example, an area might have fire in it and other ones might have 
not, an area might have lots of buried civilians while another area may have several 
agents locked in blockades. This issue is depicted in Fig. 1. We have empirically 
learned that cooperation of agents having their own achieved knowledge will solve 
the problem more effectively. 

Since in these simulations the learning speed is of a major concern, we should use 
a fast and accurate learning method, which should work properly in such complex and 
time-critical situations. The presented algorithm has these properties. 
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Table 2. Results for implementing 3 methods in VC3 map 

Method Scores 

MRL 93.1 91.8 91.6 89.5 92.6 91.6 91.4 95.2 88.7 95.9 

1_α  95.7 87.0 86.2 96.9 96.1 93.2 86.7 95.4 80.1 90.0 

05.0=γ  96.1 96.8 95.1 96.1 96.2 92.7 93.5 91.3 95.6 95.0 

 
Fig. 1. Variations of learned policies for 4 PF agents acting in 4 different partitions 

5   Conclusion 

Reinforcement Learning as a powerful solution to the unknown dynamic multi agent 
systems [13-15], is the focus of this paper. Although RL has many advantages which 
make it a favorite method in a complex environment, it has some drawbacks 
especially in continuous spaces or discrete ones with a large action or state space. In 
this paper, we presented a useful method which is inspired from a linear Function 
Approximation and an innovative updating technique. We named this method 
Parametric Reinforcement Learning (PRL). Our method was evaluated in a very 
challenging problem (Robocup Rescue Simulation). Excellent results of utilizing PRL 
in these cases show its capabilities in intricate situations. Low usage of memory and 
simplicity of implementation are two additional advantages of this technique. Its only 
drawback is that it is suboptimal which is inevitable in environments with curse of 
dimensionality. Applying PRL in many other complicated continuous space problems 
can solve their difficulties too. Perhaps extending it to the nonlinear function 
approximation can reduce its distance to the optimal solution. It is obvious that this 
will take more time for the agents to learn and it is not suitable for time-critical 
situations like rescue simulation.  



416 O. Aghazadeh, M.A. Sharbafi, and A.T. Haghighat  

References 

1. Ahmad Sharbafi, M., Lucas, C., AmirGhiasvand, O., Aghazadeh, O., Toroghi Haghighat, 
A.: Using Emotional Learning in Rescue Simulation Environment, Transactions on 
Engineering, Computing and Technology.  13, 333–337 (2006) 

2. Allen-Williams, M.: Coordination in multi-agent systems, PhD thesis, University of 
Southampton (2006) 

3. Dorais, G., Bonasso, R., Kortenkamp, D., Pell, P., Schreckenghost., D.: Adjustable 
autonomy for human-centered autonomous systems on Mars. In: Mars Society Conference 
(1998) 

4. Schurr, N., Marecki, J., Lewis, J.P., Tambe, M., Scerri, P.: The defacto system: 
Coordinating human-agent teams for the future. In: Multi-Agent Programming, pp. 197–
215. Springer, New York (2005) 

5. Scerri, P., Sycara, K., Tambe, M.: Adjustable Autonomy in the Context of Coordination. 
In: AIAA 1st Intelligent Systems Technical Conference, Chicago, Illinois (2004) 

6. Santamaria, J.C., Sutton, R.S., Ram, A.: Experiments with reinforcement learning in 
problems with continuous state and action spaces. Adaptive Behavior 6(2), 163–218 
(1998) 

7. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. MIT Press (1998) 
8. Baird, L.: Reinforcement learning in continuous time: Advantage updating. In Neural 

Networks. IEEE World Congress on Computational Intelligence 4, 2448–2453 (1994) 
9. Doya, K.: Temporal difference learning in continuous time and space. In: Advances in 

Neural Information Processing Systems, pp. 1073–1079. The MIT Press (1996) 
10. van Kampen, E.-J.: Continuous Adaptive Critic Flight Control using Approximated Plant 

Dynamics, Master of Science Thesis Faculty of Aerospace Engineering, Delft University 
of Technology (2006) 

11. Martin Appl.: Model-Based Reinforcement Learning in Continuous Environments, PhD 
thesis Technical University of Munich (2000) 

12. Precup, D., Sutton, R., Dasgupta, S.: Off-Policy Temporal-Difference Learning with 
Function Approximation. In: ICML 2001, pp. 417–424 (2001) 

13. Sutton, R.: Open Theoretical Questions in Reinforcement Learning. In: Fischer, P., Simon, 
H.U. (eds.) EuroCOLT 1999. LNCS (LNAI), vol. 1572, pp. 11–17. Springer, Heidelberg 
(1999) 

14. Habibi, J., Ahmadi, M., Nouri, A., Sayyadian, M., Nevisi, M.: Utilizing Different 
Multiagent Methods in Robocup Rescue Simulation. In: Polani, D., Browning, B., 
Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020. Springer, 
Heidelberg (2004) 

15. Kitano, H., Tadokoro, S., Noda, I., Matsubara, H., Takahashi, T., Shinjou, A., Shimada, S.: 
RoboCup-Rescue: Search and Rescue in Large Scale Disasters as a Domain for 
Autonomous Agents Research. In: IEEE Conference on Man, Systems, and Cybernetics 
(1999) 

 



U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 417–424, 2008. 
© Springer-Verlag Berlin Heidelberg 2008 

Obtaining the Inverse Distance Map from a Non-SVP 
Hyperbolic Catadioptric Robotic Vision System 
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Abstract. The use of single viewpoint catadioptric vision systems is a common 
approach in mobile robotics, despite the constraints imposed by those systems. 
A general solution to calculate the robot centered distances map on non-SVP 
catadioptric setups, exploring a back-propagation ray-tracing approach and the 
mathematical properties of the mirror surface is discussed in this paper. Results 
from this technique applied in the robots of the CAMBADA team (Cooperative 
Autonomous Mobile Robots with Advanced Distributed Architecture) are 
presented, showing the effectiveness of the solution.  

Keywords: Omnidirectional vision, robot vision, visualization. 

1   Introduction and Related Work 

The use of a catadioptric omni-directional vision system based on a regular video 
camera pointed at a hyperbolic mirror is a common solution for the main sensorial 
element found in a significant number of autonomous mobile robot applications. This 
is the case of the Middle Size Robocup Competition, where most of the teams adopt 
this approach for their robots vision sub-system [1-5]. This ensures an integrated 
perception of all major target objects in the robots surrounding area, allowing a higher 
degree of maneuverability at the cost of higher resolution degradation with growing 
distances away from the robot [6] when compared to non-holonomic setups. For most 
practical applications, this setup requires the translation of the planar field of view, at 
the camera sensor plane, into real world coordinates at the ground plane, using the 
robot as the center of this system. To simplify this non-linear transformation, most 
practical approaches choose to create a mechanical geometric setup that ensures a 
symmetrical solution by means of single viewpoint (SVP) approach [1][2][5]. This 
calls for a precise alignment of the four major points comprising the vision setup: the 
mirror focus, the mirror apex, the lens focus and the center of the image sensor. It also 
demands the sensor plane to be both parallel to the ground field and normal to the 
mirror axis of revolution, and the mirror foci to be coincident with the effective 
viewpoint and the camera pinhole respectively [7]. This approach generally precludes 
the use of low cost video cameras, due to the commonly found problem of 
translational and angular misalignment between the CCD sensor and the lens plane 
and focus. In this paper we describe a general solution to calculate the robot centered 
distances map on non-SVP catadioptric setups, exploring a back-propagation ray-
tracing approach, also known as “bird's eye view”, and the mathematical properties of 
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the mirror surface [8][9]. This solution effectively compensates for the misalignments 
that may result either from a simple mechanical setup or from the use of low cost video 
cameras. Results from this technique, applied to the robots of the CAMBADA team 
(Cooperative Autonomous Mobile Robots with Advanced Distributed Architecture), are 
presented. 

2   The Framework 

In the following discussion we will assume a specific setup comprising a catadioptric 
vision module mounted on top of a mechanical structure (figure 1a)). It includes a low 
cost Fire-I BCL 1.2 Unibrain camera with a 3.6mm focal distance inexpensive lens. 
The main characteristics of this sensor can be depicted in figure 1b).  
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Fig. 1. a) The robot setup with the top catadioptric vision system. b) The Unibrain camera CCD 
main characteristics. 

The used mirror has a hyperbolic surface, described by the following equation: 

 ( )
(mm)   1

10001000

222

=+− zxy
. (1) 

where y is the mirror axis of revolution and z is the axis parallel to a line that connects 
the robot center to its front. Height from the mirror apex to the ground plane is 
roughly 650mm. Some simplifications will also be used in regard with the diffraction 
part of the setup. The lens has a narrow field of view and must be able to be focused 
at a short distance. This, together with the depth of the mirror, implies a reduced 
depth of field and therefore an associated defocus blur problem [6]. Fortunately, since 
spatial resolution of the acquired mirror image is significantly reduced with distance, 
this problem has a low impact in the solution when compared with the low-resolution 
problem itself. A narrow field of view, on the other hand, also reduces achromaticity 
aberration and radial distortion introduced by the lens. Camera/lenses calibration 
procedures are a well-known problem and are widely described in the literature 
[10][11] – e.g Zhang’s method. We will also assume that the pinhole model can 
provide an accurate enough approach for our practical setup, therefore disregarding 
any radial distortion of the lens.  
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3   Discussion 

3.1   Initial Approach 

Lets assume a restricted setup as in fig. 2. Assumptions of this setup are as follows: 

• The origin of the coordinate system is coincident with the camera pinhole 
through which all light rays will pass; 

• i, j and k are unit vectors along axis X, Y and Z, respectively; 
• The Y axis is parallel to the mirror axis of revolution; 
• CCD major axis is parallel to the X system axis; 
• CCD plane is parallel to the XZ plane; 
• Mirror foci do not necessarily lie on the Y system axis; 
• The vector that connects the robot center to its front is parallel and have the 

same direction as the positive system Z axis; 
• Distances from the lens focus to the CCD plane and from the mirror apex to 

the XZ plane are htf and mtf respectively and can be readily available from 
the setup and from manufacturer data.  

• Point Pm(mcx, 0, mcz) is the intersection point of the mirror axis of revolution 
with the XZ plane; 

• Distance unit used throughout this discussion will be the millimeter. 
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Fig. 2. left) The restricted setup with its coordinate system axis (X, Y, Z), (mirror) and (CCD). 
The axis origin is coincident with the camera pinhole (figure objects are not drawn to scale). 
right) A random pixel in the CCD sensor plane is the start point for the back propagation ray. 

Mapping equation (1) it into the defined coordinate system, we get 

 ( ) ( ) offczcx Kmzmxy +−+−+= 221000  where  1000−= mtfkoff . (2,3) 

Assuming a randomly selected CCD pixel (Xx,Xz), at point Pp(pcx, -htf ,pcz) (fig. 2 b)),  
the back propagation ray that crosses the origin, may or may not intersect the mirror 
surface. This can be evaluated from the ray vector equation, solving for y=mtf+md, 
where md is the mirror depth, and obtaining the distance module from the mirror 
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center. If this module is greater than the mirror maximum radius then the ray will not 
intersect the mirror and the selected pixel will not contribute to the distance map. 

Assuming now that this particular ray will intersect the mirror surface, we can then 
define a plane FR, normal to XZ and containing this line, equated by 

 ( )raxz αtan= . (4) 

The line containing position vector ra,  can then be expressed as a function of X as  

( ) ( )raraxy αβ costan= . (5)

Substituting (4) and (5) into (2) we get the equation of the line of intersection between 
the mirror surface and plane FR. Pr, can then be determined from the equality 

 ( ) ( ) ( )( ) offczracx

ra

ra KMxMx
x

+−+−+= 22 tan1000
)cos(

tan α
α
β

. (6)

which can be transformed into a quadratic equation of the form 

02 =++ cbxax . (7)

where 
 

        ( )221 tctn kka −+=  .    ( )cxcztnofftc MMkkkb −−= 2 . 

2221000 offcxcz KMMc −++= . 

      (8,9) 

     (10) 

and 
( )
( )ra

ra
tck

α
β

cos

tan
=          ( )ratnk αtan= .      (11) 

Having found Pr, we can now consider the plane FN (fig. 3 a)) defined by Pr and by 
the mirror axis of revolution. The angle of the normal to the mirror surface at point Pr 
can be equated from the derivative of the hyperbolic function at that point, as a 
function of |Ma|, 
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This normal line intercepts the XZ plane at point Pn. The angle between the incident 
ray and the normal at the incidence point can be obtained from the dot product 
between the two vectors, -ra and rn. Solving for φrm: 
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nrrnrrnrr czczczcycycycxcxcx
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1cosφ . (13) 

The reflection ray vector, rt, starts at point Pr and lies on a line going through point 
Pt. Its line equation will therefore be 

 ))()()(()( krtjrtirtukrjrirP czczcycycxcxczcycx −+−+−+++= . (14) 
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Fig. 3. left) Determining the normal to the mirror surface at point Pr and the equation for the 
reflected ray. right) (Pg) will be the point on the ground plane for the back-propagation ray. 

The point Pg can then be obtained from the mirror to ground height hmf, and from the 
ground plane and rt line equations (fig. 3 b)), which, evaluating for u, gives 
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3.2   Generalization 

To generalize this approach we must now consider the following misalignment 
factors: 1) The CCD plane may not be parallel to the XZ plane; 2) The CCD minor 
axis may not be correctly aligned with the vector that connects the robot center to its 
front; 3) The mirror axis of rotation may not be normal to the ground plane. 

The first of these factors may result from two different sources: the CCD plane not 
being parallel to the lens plane; and the mirror axis of rotation being not normal to the 
CCD plane. Since both effects result in geometrical transformations of the setup, we 
will integrate these two contributions in the CCD plane, therefore providing a simpler 
solution. The second of the misalignment factors, on the other hand, can also be 
integrated as a rotation angle around the Y axis. To generalize the solution for these 
two correction factors, we will assume a CCD center point translation offset given by 
(-dx, 0, -dy), and three rotation angles applied to the sensor: γ, ρ and θ, around the Y’, 
X’ and Z’ axis respectively. These four geometrical transformations upon the original 
Pp pixel point can be obtained from the composition of the four homogeneous 
transformation matrices,  
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The new start point Pp’(p’cx, p’cy, p’cz), already translated to the original coordinate 
system, can therefore be obtained from the following three equations: 

 
xczcxcx dppp +++= ))cos()(sin())sin()sin()sin()cos()(cos(' ργθγρθγ
 htfppp czcxcy −+= )sin()sin()(cos(' ρθρ

 
zczcxcz dppp +++−= ))cos()(cos())sin()cos()sin()cos()sin((' ργθγρθγ  

(17) 

Analysis of the remaining problem can now follow from (5) substituting Pp’ for Pp. 
Finally we can also deal with the third misalignment pretty much in the same way. 

We just have to temporary shift the coordinate system origin, assume the original 
floor plane equation defined by its normal vector j, and perform a similar geometrical 
transformation to this vector. This time, however, only rotation angles ρ and θ need to 
be applied. The new unit vector g, will result as  

 
 

)sin(θ−=cxg
 

 
hmfmtfgcy +−= )cos()cos( θρ

 

 
)cos()sin( θρ=czg  

(18) 

The rotated ground plane can therefore be expressed in Cartesian form as 

 
 

)( hmfmtfgZgYgXg cyczcycx −=++  (19) 

Replacing the rt line equation (14) for the X, Y and Z variables into (19), the 
intersection point can be found as a function of u. Note that we still have to check if 
rt is parallel to the ground plane – which can be done by means of the rt and g dot 
product. This cartesian product can also be used to check if the angle between rt and 
g is obtuse, in which case the reflected ray will be above the horizon line. 

3.3   Obtaining the Model Parameters 

Some of the parameters needed to obtain the distance map can be measured from the 
setup itself, e.g., the ground plane rotation relative to the mirror base. A half degree 
and 0.5mm precision has been proven enough for practical results. Other parameters 
can be extracted from algorithmic analysis of the image or from a mixed approach. 
Consider, for instance, thin lens law 

 

B
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f
+

=
1

 . (20) 

G/B is readily available from the diameter of the mirror outer rim in the sensor image; 
g can be easily obtained from the practical setup while f and the actual pixel size are 
defined by the sensor and lens manufacturers. Since G/B is also the ratio of distances 
between the lens focus and both the focus plane and the sensor plane, the g value can 
also be easily obtained. The main image features used in this automatic extraction are 
the mirror outer rim diameter and eccentricity, the center of the mirror image, the 
center of the robot image, and both the radius, distance and eccentricity of the game 
field lines – mainly the mid-field circle, lateral and area lines. 
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4   Support Visual Tools and Results 

Although misalignment parameters can actually be obtained from a set of features in 
the acquired image, the resulting map can still present minor distortions. This is due 
to the fact that spatial resolution on the mirror image greatly degrades with distance. 
Since parameter extraction depends on feature recognition on the image, degradation 
of resolution actually places a bound on feature extraction fidelity. To allow further 
trimming of these parameters, two simple image feedback tools have been developed. 

 

 

Fig. 4. Acquired image after reverse-mapping into the distance map. On the left, the map was 
obtained with all misalignment parameters set to zero. On the right, after automatic correction. 

The first one creates a reverse mapping of the acquired image into the real world 
distance map. A fill-in algorithm is used to integrate image data in areas outside pixel 
mapping on the ground plane. (fig. 4). 

The second generates a visual grid with 0.5m distances between both lines and 
columns, which is superimposed on the original image. This provides an immediate 
visual clue for the need of possible further distance correction (fig. 5). Since the mid-
field circle used in this setup has exactly an outer diameter of 1m, incorrect distance 
map generation will be emphasized by grid and circle misalignment. 

 

 

Fig. 5. A 0.5m grid, superimposed on the original image. On the left, with all correction 
parameters set to zero. On the right, the same grid after geometrical parameter extraction. 
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Comparison between real distance values measured at more than 20 different field 
locations and the values taken from the generated map, have shown errors always 
bellow twice the image spatial resolution. These results are perfectly within the 
required bounds for the robot major tasks, namely object localization and self-
localization on the field.  

5   Conclusions 

Use of low cost cameras in a general-purpose omni-directional catadioptric vision 
system, without the aid of any precision adjustment mechanism, will normally 
preclude the use of a SVP approach. To overcome this limitation, this article explores 
a “birds eye view” algorithm to obtain the ground plane distance map in the 
CAMBADA football robotic team. Taking into account the intrinsic combined spatial 
resolution of mirror and image sensor, the method provides viable and useful results 
that can actually be used in practical robotic applications. This method is supported 
by a set of image analysis algorithms that can effectively extract the parameters 
needed to obtain a distance map with an error within the resolution bounds. Further 
trimming of these parameters can be manually and interactively performed, in case of 
need, with the support of a set of visual feedback tools that provide the user with an 
intuitive solution for analysis of the obtained results. 
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Abstract. Developing and testing the key modules of autonomous hu-
manoid robots (e.g., for vision, localization, and behavior control) in
software-in-the-loop (SIL) experiments, requires real-time simulation of
the main motion and sensing properties. These include humanoid robot
kinematics and dynamics, the interaction with the environment, and sen-
sor simulation. To deal with an increasing number of robots per team the
simulation algorithms must be very efficient. In this paper, the simulator
framework MuRoSimF (Multi-Robot-Simulation-Framework) is presented
which allows the flexible and transparent integration of different sim-
ulation algorithms with the same robot model. These include several
algorithms for simulation of humanoid robot motion kinematics and dy-
namics (with O(n) runtime complexity), collision handling, and camera
simulation including lens distortion. A simulator for teams of humanoid
robots based on MuRoSimF is presented. A unique feature of this simulator
is the scalability of the level of detail and complexity which can be chosen
individually for each simulated robot and tailored to the requirements
of a specific SIL test. Performance measurements are given for real-time
simulation on a moderate laptop computer of up to six humanoid robots
with 21 degrees of freedom, each equipped with an articulated camera.

1 Introduction

Besides suitable hardware the performance of an autonomous humanoid robot
is mainly determined by the software modules applied for cognition, behavior
and motion control. Efficient performance measuring and debugging of these
modules on the real robot is very difficult in general, because physical robots are
expensive and only limitedly available and may suffer from many experiments.
Additionally an observed, undesired robot performance can be caused by any
of the used software modules, which in physical experiments are difficult to test
in isolation. Replacing the robot by a real-time simulation of its main physical
characteristics including the kinematics and dynamics of humanoid motion with
many actuated joints enables SIL-testing, monitoring and debugging of software
modules under repeatable and controllable conditions.

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 425–432, 2008.
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In this paper a real-time simulator for teams of humanoid robots is presented
which is closely integrated with the robot control framework RoboFrame [1]. The
simulation can transparently be interfaced with all software modules (see Fig. 1).
Many robot designs include controller hardware for motion generation, e.g., [2].
The firmware of the controller can also be integrated into the simulation.

Fig. 1. The modules of the robot control software may be connected transparently
either to the real robot or a real-time simulation

While SIL-tests of motion generation or image processing require physical ac-
curacy, the needs for testing the behavior control are different: For investigating
how the behavior control is affected by exact or inexact localization, computer
vision with ideal or blurred camera images or walking without or with possible
slipping of the feet the simulator must support different levels of simulation de-
tail. Thus, different approaches for behavior-based humanoid robot control can
be tested by controlling the representations between stimulus and action.

To meet these requirements the simulator must support a flexible exchange
and combination of different simulation algorithms for the same purpose, e.g.,
robot dynamics, on different levels of detail. When exchanging algorithms there
should be no need to change the models of the robots or the environment. The
framework presented in this paper fulfills these requirements. Several algorithms
for real-time motion-, contact- and sensor-simulation are considered. Results for
real-time simulation of soccer playing humanoid robots are presented.

2 Overview

2.1 Modeling and Simulation of Robot Motion

Humanoid and four-legged robots are modeled as tree-structured kinematic chains
of (usually rigid) links and (usually rotational) joints. The forward kinematics
model describes the 3D position and orientation of the robot’s bodies depending
on the current joint angles. To build the kinematical model the geometrical data
of the robot (link lengths, type and position of joints etc.) is needed.
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A physics-based modeling of legged locomotion describes the nonlinear rela-
tionships between the forces and moments acting on each joint and the feet etc.
and the position, velocity and acceleration of each joint. The high dimensional
nonlinear multibody system dynamics (MBS) results in second order differential
equations which can be formulated in various ways differing in terms of efficiency,
modularity and flexibility [3,4]. In addition to the geometrical data a dynamics
model requires kinetical data as mass, center of mass and inertia matrix for each
link and joint, max/min motor torques and joint velocities. To simulate interac-
tion with the environment detection and handling of collisions as well as suitable
models of foot-ground contacts are required.

In the context of simulation of autonomous robots and RoboCup most often
the open source Open Dynamics Engine (ODE) [5] is applied. ODE provides
collision detection for several geometric primitives and a simulation of MBS
dynamics. Only a one-step integrator with constant time step length and without
integration error monitoring is available.

2.2 Simulation of Sensors

For closed loop simulation artificial readings of the robot’s sensors are necessary.
While joint position sensors can be simulated using a robot kinematics model,
simulation of inertial or contact-force sensors requires a dynamics model. Cam-
eras can be simulated using real-time rendering based on OpenGL or Direct3D.
Only few simulators (cf. Sect. 2.3, e.g., [6,7]) enable the simulation of projections
beyond the standard pinhole model.

2.3 Overview of Existing Robot Simulators

UCHILSIM [8] is a simulator for the RoboCup Four-legged League limited to
the AIBO robots. Motion simulation is based on ODE. OpenGL is used for
visualization and simulation of camera images.

SimRobot [6] is a general simulator for different mobile robots. The current
version uses ODE for motion simulation. Simulation of four legged and wheeled
robots have been demonstrated in [6]. Simulated sensors include tactile sensors,
distance sensors and cameras, the later using accelerated hardware rendering.

USARSIM [9] is a simulator for different types of vehicles, including legged
robots [10]. It provides a variety of sensors with the simulation of noise. The
simulation is based on the Unreal Engine, a game engine providing a physics
simulation and realistic visualization through high accuracy rendering.

Gazebo [11] is a general 3D multi-robot simulator with graphical interface
and dynamics simulation. It is part of the Player/Stage project [12]. Motion
simulation is based on ODE. Several sensor systems can be simulated including
distance sensors and cameras. Additional sensors can be added.

Webots [13] is a commercially available general robot simulation package pro-
viding a wide variety of legged and wheeled robots. The motion simulation is
based on ODE and the visualization uses OpenGL. Webots provides several
types of sensors including cameras, distance and contact sensors.
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2.4 Discussion

All simulators mentioned above use either ODE or a proprietary engine as motion
simulator which all derive from physics engines in games. In games, however,
only a physically plausible appearance based on simplified robot dynamics is
required and not an accurate simulation of moments and forces acting in each of
the robot’s joints. The latter would require a full robot MBS dynamics model as
well as error monitoring integration methods. Furthermore, an adaption of the
level of detail in robot motion simulation or a flexible exchange or combination
of different motion simulators for robots in the same environment is not possible.

MuRoSimF overcomes this problem by introducing a flexible interface allowing
the combination of different simulation algorithms. By using the concept pre-
sented in this paper, simulation algorithms can be recombined easily for different
simulators while maintaining efficient exchange of data.

3 Simulator Framework: Concept and Implementation

3.1 Modeling and Integration of Algorithms

The simulated robots as well as the environment are described as collections of
objects. Each thereof is a collection of constant properties (like mass, size, shape,
etc.) and variable properties (like position, velocity, etc.) which are assigned at
runtime. During creation of robots and environment only constant properties are
assigned. The objects are linked to the algorithms used for simulation next. In
this phase, variable properties are assigned to the objects if they are needed by
an algorithm. When linking algorithms to an object, it is checked if the object
provides the necessary constant properties thus avoiding unnecessary calculation.

Robots are modeled as kinematic trees, consisting of one base, forks, static and
variable translations, and static and variable rotations. Each of these elements is
a specialized object having the necessary properties like length for a translation
or angle and axis for a fixed rotation. During creation of the kinematic tree,
additional constant properties may be added to the object, depending on the
desired level of detail. All objects belonging to one robot are stored in one con-
tainer, providing access to several subsets of the objects as the joints (denoting
all variable translations and rotations) or the bodies (denoting all objects which
may interact physically with the environment).

3.2 Simulation of Humanoid Robot Motion

Two alternative algorithms for humanoid robot motion simulation are currently
utilized. Both have O(n) computational complexity, with n the number of joints
of the humanoid robot and can be individually selected for different humanoid
robots in a multi-robot simulation.

Kinematic walking is a computationally cheap algorithm based on the assump-
tion that during walking always (at least) one foot of the robot is in contact with
the ground. During each time-step of the numerical integration, the direct kine-
matics of the humanoid robot is computed with the constraint, that the stance
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foot is not tilted or lifted off the ground unless the swinging foot touches or
penetrates the ground plane. Then, the roles of the feet are exchanged. Besides
its low computational complexity this algorithm has the benefit that the simu-
lated robot can not fall over. If highly accurate simulation of the humanoid robot
motion is not crucial, this algorithm can be used successfully, e.g., for testing
behavior-based control or self localization modules. The algorithm is restricted
to purely humanoid walking applications.

A simplified robot dynamics algorithm has been developed to overcome the
drawbacks of the purely kinematic simulation. During each time-step, all exter-
nal forces and resulting torques are summed up at the total center of mass of the
robot. Only for the center of mass dynamics calculations are performed. Relative
motions of all other elements of the robot are calculated using direct kinematics.
The basic version of the algorithm uses a center of mass and an inertia matrix of
the robot which are in a constant position relative to the robot’s base. For more
realistic motions, the center of mass and the inertia tensor can be calculated
for each time step based on masses assigned to the robot’s bodies. Both ver-
sions allow for a rich variety of motions. The second version is especially useful
for humanoid robot motions during which the robot’s overall mass distribution
significantly changes as for falling down, standing up or balancing. As these
algorithms do not rely on too specific assumptions on the robot’s kinematical
structure, they are not limited to humanoid robots.

A special strength of MuRoSimF is, that algorithms for full MBS forward dy-
namics like composite rigid body or articulated body algorithms [3,4] can be
incorporated as well in case a higher level of detail in physical motion simula-
tion. Also for numerical integration not only the common Eulers method but
also higher order methods with variable step size may be employed.

3.3 Collision Detection and Handling

To simulate the interactions of a robot with its environment the collisions be-
tween the robot’s bodies and the environment must be detected and handled.
Collision detection and handling are treated as separate modules for which dif-
ferent algorithms of different complexity or level of detail can be applied easily.

Collision detection is based on an object’s shape, position and orientation.
Currently the primitive objects box, ellipsoid, cylinder and plane are supported.
To avoid the O(n2) complexity of checking each object for collision with any other
object, collision detection can be activated during setup of the simulation for
each pair of objects individually. This process can be automated by defining sets
of objects which do not need to be intersected with each other. For specialized
simulations it is also possible, to use only selected bodies of a robot for collision
detection (e.g., only the feet, if no other application than humanoid walking is
considered). A collision is described by the penetration depth cdepth of the two
bodies, the position cpos ∈ R

3 of the contact point and the direction cnormal ∈ R
3

of the normal force pushing the bodies apart.
Collision handling is based on a soft collision model, allowing bodies to pen-

etrate. Collisions are handled by calculating the resulting normal and frictional
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Fig. 2. Left side: Simulation of motion and sensing of two humanoid robots, each
equipped with an articulated camera in the head and a wide angle camera in the chest
whose images are displayed below. Right: GUI of control application displaying the
striker robot’s percepts in robot centric coordinates and within the camera images.

forces. To allow for different kinds of surfaces, additional parameters describing
the contact situation are used. These parameters depend on the two colliding
surfaces and are stored for each pair of surface types once. The normal force

fnormal =

{
1 · sc · cdepth · cnormal if objects are getting closer
sb · sc · cdepth · cnormal if objects are separating

(1)

is calculated using a spring model with the spring constant sc. The scaling factor
0 ≤ sb ≤ 1 is used to model different forces depending on the objects’ relative
velocity, allowing for different kinds of impact. Frictional forces ffric are calcu-
lated using a viscous friction model depending on the relative velocity of the
colliding bodies and the constant μ. As only one contact point is calculated for
each pair of bodies, a pseudo-friction nfric depending on the relative angular
velocity is calculated which is used to stabilize standing bodies

ffric = vrel · sμ · fnormal, nfric = ωrel · sν · fnormal. (2)

3.4 Visualization and Camera Simulation

Real time rendering for visualization of the simulated scene is based on OpenGL.
It is possible to display any property of any simulated object: all objects which
need to be displayed are registered at the rendering module which keeps a set of
renderers for the properties of interest and matches any object having a specific
property with the respective renderer. Complexity and realism of the rendering
process can be adjusted easily by exchanging the respective renderers. Therefore,
scene rendering can be adjusted to different needs and levels of detail.
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Camera simulation is based on the visualization module. After rendering the
scene from the camera’s point of view, the created image can be post-processed.
Distortion caused by a camera lens (cf. Fig. 2) is simulated by moving the pixels
according to the camera model from the well known camera calibration toolbox
for Matlab [14]. This approach enables easy modeling of real cameras by cali-
brating them with the freely available toolbox. By changing the level of detail
(and therefore realism) of the rendering algorithms used, the camera simulation
can be adjusted to different cases and purposes.

4 Results

Using MuRoSimF various simulators for specific applications, e.g., for teams of
humanoid robots or mixed teams of humanoid and wheeled robots can be re-
alized. For each robot the simulation algorithms for motion, sensing, collision
detection and handling can be chosen individually. Thus a high scalability of
the level of detail can be achieved for tailoring the real-time simulation accuracy
and computational complexity to the current needs.

The simulator has been used successfully for testing the software modules
for vision, behavior control and self localization of robots in different scenar-
ios from the RoboCup Humanoid League (Fig. 3). Further images and videos
can be obtained from www.dribblers.de/murosimf. The performance has been
measured using a standard laptop computer (IntelCentrinoDuo CPU (1.66 GHz),
1GB of RAM, Intel 945GM graphics chip set) with the simulation running single-
threaded (see table 1). Each robot model consists of 21 joints [2].

Fig. 3. Left: Penalty kick. Middle: 3 versus 3 soccer game. Right: Slalom challenge.

Table 1. Simulation performance

Real-time simulation of frame rate robots

Kinematic motion 100 10

Simplified dynamics motion 1000 8

Kinematic motion and one camera 100 resp. 20 6

Dynamic motion and one camera 1000 resp. 20 5

Kinematic motion and one camera with distortion 100 resp. 20 3

Dynamic motion and one camera with distortion 1000 resp. 20 3

5 Conclusions

The new simulator framework MuRoSimF enables real-time simulation of motion,
sensing and interaction with the environment for SIL-testing of onboard control
software modules for teams of humanoid robots. It supports a scalable level of
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detail and a flexible exchange of algorithms for different simulation subtasks for
different robots in the same multi-robot simulation. Results have been presented
for scenarios of the RoboCup humanoid league. The source code of the simulator
will be made available for other researcher upon request.
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erative, adaptive and responsive monitoring in mixed mode environments”.
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Abstract. Controlling a biped robot with a high degree of freedom to achieve
stable movement patterns is still an open and complex problem, in particular
within the RoboCup community. Thus, the development of control mechanisms
for biped locomotion have become an important field of research. In this paper
we introduce a model-free approach of biped motion generation, which specifies
target angles for all driven joints and is based on a neural oscillator. It is poten-
tially capable to control any servo motor driven biped robot, in particular those
with a high degree of freedom, and requires only the identification of the robot’s
physical constants in order to provide an adequate simulation. The approach was
implemented and successfully tested within a physical simulation of our target
system - the 19-DoF Bioloid robot. The crucial task of identifying and optimizing
appropriate parameter sets for this method was tackled using evolutionary algo-
rithms. We could show, that the presented approach is applicable in generating
walking patterns for the simulated biped robot. The work demonstrates, how the
important parameters may be identified and optimized when applying evolution-
ary algorithms. Several so evolved controllers were capable of generating a robust
biped walking behavior with relatively high walking speeds, even without using
sensory information. In addition we present first results of laboratory experi-
ments, where some of the evolved motions were tried to transfer to real hardware.

Keywords: Biped Walking, Humanoid Robot Simulation, Evolutionary Algo-
rithms, Walking Controllers, Neural Oscillators.

1 Introduction

Making a biped robot walk is a complex task. Describing and calculating joint trajec-
tories is a common way to control servo motor driven humanoid robots. In the majority
of the cases, the trajectory describing coefficients are calculated based on a model of
the robot and a stability criteria. As an example, Takanishi’s research group in Waseda
University presented the humanoid robot WABIAN, where the trajectories of the arms,
legs and ZMP were described by Fourier series [1]. The coefficients were determined
in simulation in a way to ensure the Zero Moment Point (ZMP,[2]) conditions. As a
drawback of this approach, a detailed and valid model of the target system has to be
identified, and changes in the target system require a redesign of this model.

� Our work is granted by the German Research Foundation (DFG) in the main research program
1125 “Cooperating teams of mobile robots in dynamic environments”.

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 433–440, 2008.
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Another well-established approach of gaining the reference trajectories, which is
emerged from studying vertebrate animals are the Central Pattern Generators (CPG,
[3,4,5]). Central pattern generators are circuits which are able to produce periodic sig-
nals in a self-contained way, i.e. without having any rhythmic input into themselves.
In order to build structures with similar properties to the neural oscillators found in
animals, several mathematical models have been proposed (e.g. [6,7,8]). Matsuoka pro-
posed a mathematical model of CPGs and demonstrated that the combination of simple
neural models can generate the neural activities for biped locomotion [9]. This model
has been applied across several biped simulations (e.g. [10]), as well as used for real
robots (e.g. [11]). One of the difficulties in the application of the CPG model to real
robots is to determine the weights of neural connections. This is the main reason why
genetic algorithms have often been used to solve this problem [12,13].

Within this paper we present a model-free approach of biped motion generation,
based on a neural oscillator. The neural architecture has a biological analogy which is
particularly interesting from a cognitive point of view. Furthermore it provides a very
easy and natural way to incorporate arbitrary sensory input. We demonstrate the use of
physical simulation and evolutionary algorithms to identify appropriate parameter sets
of the presented motion generation model. This methodology is independent of a certain
robot instance and does not require the detailed physical analysis of the target system.
The application of simulation and artificial evolution permits an easy adaption of the
motion generation to any modifications in the target system itself or in the requirements
of the motion.

2 Simulation Environment

The target system of our study is a 19-DoF Bioloid robot with a shoulder height of
34cm and a weight of approx. 2.2kg. Due to the natural limits of real hardware exper-
iments a physical simulation of this robot was developed. The simulation is based on
the Open Dynamics Engine library (ODE, [14]) and simulates a simplified model of the
real robot, consisting of 59 body parts and 19 servo motor joints. The time-integrated
simulation is processed with a resolution of 100 simulation steps per second. Several
isolated motor characteristic experiments were accomplished, in order to adequately
simulate the servo motors torque and friction (see Fig. 1). Finally, as a weak validation
of the simulation behavior, several real robot motions were transferred to the simulated
one and could reproduce almost identical behavior. As an example, the handcrafted
stand-up motion of the real robot is simulated accordingly (see Fig. 2).

The modular structured simulation environment was designed for exploring appro-
priate non-model based control structures which are potentially able to generate robust
biped motions of our target system. Within this paper, a robust motion denotes a motion
that is capable to compensate small environmental disturbances (e.g. small obstacles,
impacts, rough floors, etc.). Regarding the simulation, the simulated robot had to pass
at least 120s without falling or visible tumbling, while facing the ODE’s simulated en-
vironmental noise.
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Fig. 1. Real and simulated world (left to right): Real Bioloid, Simulated Bioloid, Real servo motor
torque and friction experiment setup, Simulated servo motor torque and friction experiment setup

Fig. 2. A first weak validation of the simulation: The stand-up motion is based upon interpolated
keyframes and was developed on the real Bioloid. The (raw) transfer of the identical keyframe
structure to simulation shows almost identical behavior.

3 Motion Generation – Neural Oscillator Approach

The neural oscillator approach generates a core oscillation with the use of the discrete-
time dynamics of a two neuron network. Aspects of discrete-time dynamics with recur-
rent connectivity have been studied extensively, e.g. in [15,16]. The basic idea behind
this approach is formulated by Pasemann, Hild and Zahedi in [17], which is also a good
address for its mathematical background. The network update formula is as follows:

a(t + 1) := tanh
(
Ω a(t)

)
, Ω =

(
ω11 ω12

ω21 ω22

)
(1)

It is demonstrated, that certain configurations of the weight matrix Ω cause periodic
or quasi-periodic attractors in the phase space of the network [17,18]. These types of
networks are able to generate different types of oscillations which in turn can be used for
generating reference trajectories. An example of such a quasi-periodic orbit is displayed
in Fig. 4.

The oscillations of the presented two neuron networks are now used for generating
the joint’s reference trajectories. The reference trajectory of a single joint is represented
by the output of a dedicated (standard additive) neuron. The neuron derives its activa-
tion by two synapses coming from the two neurons oscillator and a bias term which
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Fig. 3. Topology of the neural net controller. Each joint’s reference trajectory is given by a dedi-
cated neuron, which derives its activation by the two oscillating neurons N1, N2 and a bias term θ j.
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Fig. 4. Example dynamics of a two neuron network output: Phase trajectory in (a1, a2)-space
(left), and output signals of neuron 1 and 2 (right) for ω11 = 1.17, ω12 = 0.61, ω21 = −0.47,
ω22 = 0.83. Graphs show the initial phase up to reaching the quasi-periodic attractor within the
first 100 time steps. The initial activation was set to a1 = 0.01, a2 = 0.0.

represents the offset of the trajectory’s amplitude. In this way, the reference trajectory
of a single joint is described by three parameters, ω j1, ω j2 and θ j, where ω ji denotes
the synaptic weight coming from neuron i = 1, 2 and θ j the bias of joint j. Figure 3
illustrates the neural topology of the controller’s network.

In order to reduce this parameter space, we further made use of a sagittal symmetry
assumption, which states same movements between corresponding left and right sided
joints with a half-period phase shift. In doing so, all trajectories are described by 10
output neurons, and the parameter space has a dimension of 34 synaptic weights.

4 Evolution of Walking Motions

Within this simulation environment, artificial evolutions were processed for identify-
ing applicable parameters sets of the neural net controller. The primary object was to
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Fig. 5. Fitness development of an exemplary evolution experiment using the neural oscillator
approach

Fig. 6. Evolution of Walking Pattern: Example of an evolved walking pattern applying the neural
oscillator approach. Pictures illustrate the start of walking and first steps. The displayed motion
reaches a walking speed of about 0.45m/s, which corresponds to a human walking speed of
approx. 7km/h.

identify motion patterns, that could pilot the robot a maximum possible distance within
a certain time. Each individual has to pass an episode, in which the corresponding dis-
tance is measured. An episode starts with the relocation of the robot to its initial po-
sition. Subsequently the robot is given time to adopt its starting pose, in order to pass
the episode run. The episode run is aborted if either the maximum episode duration is
exceeded, if the robot falls or if it loses the desired path. The fitness value of an indi-
vidual was set to its covered distance in stated walking direction. The actual ’position’
of the robot was defined as the center of both feet. In doing so, the fitness is defined as
follows:

f itness = min (Δyr f oot, Δyl f oot ) (2)

Δyr f oot = yr f ootend − yr f ootstart (3)

Δyl f oot = yl f ootend − yl f ootstart (4)

where yx f ootstart denotes the y-coordinate of the right/left foot at the beginning of the
episode, and yx f ootend the y-coordinate of the right/left foot at the end of the episode.
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We already processed several hundreds of evolutions experiments, and the present
results are the outcome of about 210,000 (simulated) hours.

Figure 5 shows the fitness development of such an evolution experiment.
The genotypes of the first generations were initialized with a (weak) Gaussian distri-

bution (σ = 0.01) around m = 0.0. Only the synaptic weights of the two neuron network
were chosen in a way, that the two neurons had already oscillating dynamics, which could
significantly speed up the evolution progress. The chosen parameters were: ω11 = 1.1,
ω12 = 0.7, ω21 = −0.7 and ω22 = 1.1, which corresponds to a oscillating frequency of
approx. 8 periods per 100 net-update steps. The net-update frequency was set to 10Hz
(10 updates per simulated second), hence the initial overall step frequency was 0.8Hz.

5 Motion Transfer to Real Robot

Subsequently to the simulated evolutions, we transfered and tested several of the
evolved motions patterns on the real robot. In general, the real robot was capable to
reproduce all motions with a similar visual motion phenotype - as long as the robot
acts free and does not touch the floor. Actually, none of the transfered motions could
reproduce a robust walking motion. All walking motions need manual stabilization to
avoid a fall down of the robot (see Fig. 7).

Fig. 7. Transfer of motion pattern to hardware: The ’grounded’ real robot shows similar behavior
compared to its simulated counterpart, but still needs manual support for walking

We identified two major issues that raise serious gaps between simulation and real
world behavior. One refers to the considerable gears tolerances. Due to these (currently
not simulated) tolerances, the actual trajectory of a joint crucially diverges from the
controlled reference trajectory. As a result, whole-body motions are not reproduced
with the required accuracy. To exemplify the problem: The present bodywork of the
Bioloid robot does not even allow for standing on one foot due to the joint tolerances.

The other issue refers to the complicated motion characteristics of the servo motors.
The simplified motion model of a servo motor does not sufficiently match the real servo
motor behavior. This again results in significant differences between the actual whole-
body movement and the desired one.

6 Conclusion and Outlook

Physical simulation is an effective and practical method, to study and explore motion
generation techniques of complex biped robots. We presented a neural net controller,
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that could generate several robust biped walking motions for the simulated robot. The
parameters of the neural net structure were identified by processing artificial evolutions
within the simulation environment. Finally the simulated robot could walk with rela-
tively high walking speeds of up to 0.51m/s, which corresponds to a human walking
speed of about 8km/h. Interestingly while identifying the motor coupling weights, the
evolution slightly modified the frequency of the neural oscillator from initially 0.8Hz
to 0.75Hz.

In laboratory experiments, several evolved motions were then transfered to the real
robot. However, due to discrepancies between simulated and real world behavior, none
of these transfered motions could actually generate a robust biped walking pattern on
the real robot. Nevertheless, this paper outlines how simulation may enhance real robot
motions. Generally, the presented approach may be applied to any biped robot with
trajectory driven joints. In particular it can be applied to the new simulator of the 3D-
Soccer-Simulation-League, that employs a physical model of the Fujistu HOAP-2 hu-
manoid robot.

The presented work comprises of just the first step, involved in using simulation to
explore and optimize different controller models of biped robots. Several points could
further expand on the completed work: For the first instance, we are currently engaged
in enhancing the simulation in order to reduce the gap between real and simulated be-
havior. Primarily, this includes developing an enhanced servo motor joint model which
describes all relevant characteristics of the applied AX-12 servos.

For the second instance we are studying the use of sensor feedback. At present, the
implemented walking controller does not incorporate any sensory information. In gen-
erating a robust biped motion, the system has to be sensitive to external environmental
influences, such as obstacles or various impacts, and must be able to react appropriately.
This issue includes the exploration of the appropriate sensors (e.g. touch or accelera-
tion sensors) as well as how sensor information is incorporated into the generation of
motion. The synaptic architecture of the presented controller allows for several sensor
coupling techniques. In conjunction with evolutionary algorithms the physical simula-
tion enables exploring appropriate coupling structures as well as alternative neural net
architectures. Regarding this point, first successful sensor coupling experiments were
accomplished which we will present in a forthcoming paper.
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Abstract. As the RoboCup leagues evolve, higher requirements (e.g. object 
recognition skills) are imposed over the robot vision systems, which cannot be 
fulfilled using simple mechanisms as pure color segmentation or visual sonar. 
In this context the main objective of this article is to propose a robust object 
recognition system, based on the wide-baseline matching between a reference 
image (object model) and a test image where the object is searched. The wide 
baseline matching is implemented using local interest points and invariant 
descriptors. The proposed object recognition system is validated in two real-
world tasks, recognition of objects in the RoboCup @Home league, and 
detection of robots in the humanoid league. 

1   Introduction 

In the RoboCup soccer leagues robot vision systems are mostly based on basic color 
segmentation algorithms, and in some cases on the use of visual sonar (analysis of 
scan lines) for detecting lines. The main advantage of these vision mechanisms is 
their high processing speed. However, as the soccer leagues evolve, higher 
requirements are imposed over the vision systems, which cannot be fulfilled using 
those simple vision mechanisms. For instance, nowadays some teams are looking for 
advanced features such as: use of natural landmarks without geometrical and color 
restrictions, pose independent detection and recognition of teammates and opponents, 
detection of the teammates and opponents pose, automated refereeing tools, etc. 
Neither of those features can be achieved by pure color segmentation and/or using a 
visual sonar. Moreover, some non-soccer leagues (e.g. @Home) require robust, fast, 
easy trainable and general-purpose object recognition methodologies for recognizing 
complex objects like newspapers, bottles and soda cans (see @Home 2007 rules 
definition in [18]). In some tests, the object detector must be trained in runtime using 
only a few images as it cannot be trained before the test starts (i.e. the “lost & found” 
@Home test).  

In this context, the main objective of this article is to propose a robust and versatile 
object recognition system, based on the wide-baseline matching between a reference 
image (object model) and a test image where the object is searched. Under this 
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paradigm, local interest points (local maxima/minima in a filtered image set) are 
extracted independently from both the test and the reference image, then characterized 
using invariant descriptors (each one describes the gradient distribution in a region 
around an interest point), and finally several matches between similar descriptors 
from both images are used to get an affine transformation between the two images. 
Several verification stages are introduced to test the correctness of the transformation. 
If the object model has a known pose in the reference image, the obtained 
transformation allows determining the object’s pose in the test image. 

Object recognition based on wide-baseline matching has the following desired 
features: (i) no training requirements: only one image for each relevant view of the 
object is required; (ii) general purpose: any given object can be recognized, given that 
an example image of that object is available; and (iii) near real-time operation: 
depending on the exact characteristics of the implemented system and in the number 
of object classes, a processing speed of up to 3-9 frames per second can be achieved. 

In the paper we describe the implemented object recognition system (section 2), and 
we show its use for recognizing objects in the RoboCup @Home league (section 3), and 
for detecting robots in the humanoid league (section 4). Finally, some conclusions of 
this work are given in section 5. 

2   Object Recognition Based on Wide Baseline Matching 

In the wide baseline matching problem formulation, the images to be compared are 
allowed to be taken from widely separated viewpoints, so that a point in one image 
may have moved anywhere in the other image, generating a hard matching problem. 

Wide baseline matching approaches have become increasingly popular, experiencing 
an impressive development in the last years [1][4][9][12][16]. Local interest points are 
extracted independently from both a test and a reference image, characterized using 
invariant descriptors, and finally the descriptors are matched. By processing the 
matches, a transformation between the images is obtained. 

The most employed interest point detectors are the single-scale Harris detector [2] 
and the multi-scale Lowe’s sDoG+Hessian detector [4]. The best performing interest 
point detectors are the Harris-Affine and the Hessian-Affine [11], but they are slow 
for runtime applications. In the other hand, the most popular and best performing 
descriptor [10] is the SIFT (Scale Invariant Feature Transform) [4]. 

Lowe’s system [3][4] uses the SDoG+Hessian detector, SIFT descriptors, a Hough 
transform to accumulate evidence from the matches for the possible similarity 
transformations, and a probability test to discard Hough transform bins which have 
few votes (then they could be generated only by random matches). This system has 
great recognition capabilities and near real-time operation. However, Lowe’s system 
main drawback is the use of just a simple voting-based probabilistic hypothesis 
rejection stage, which cannot successful reduce the number of false positives when 
the true positive detection rate is prioritized. This is a serious problem in real world 
applications as, for example, robot self-localization [14], robot head pose detection 
[5] or image alignment for motion detection in video [15]. In [6][7] we proposed a 
system that reduces largely the number of false positives by using several hypothesis-
based rejection stages. In this work, we extend this system by including the following 
new features: a fast probabilistic hypothesis rejection stage, a new linear correlation 
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verification stage, a better organization of the hypothesis rejection tests into several 
stages, and the use of the RANSAC algorithm and a semi-local constraints test. 
Although RANSAC and the semi-local constraints tests have being use by many 
authors, Lowe’s system does not use them. The proposed system is described in the 
following subsections. 

2.1   Generation of the Matches between SIFT Descriptors for Each Image Pair 

Local descriptors (SIFT descriptors) are extracted from both images, and matches 
between pairs of these descriptors belonging to different images are generated. This 
process is described in detail in [5][4]. 

2.2   Transformation Computation and Hypothesis Rejection Tests 

This computation method (L&R – Loncomilla & Ruiz-del-Solar) considers several 
stages that are described in the next paragraphs.  

1. Similarity transformations are determined using the Hough transform (see 
description in [3]). After the Hough transform is computed, a set of bins, each one 
corresponding to a similarity transformation, is determined. Then: 

a. Invalid bins (those that have less than 4 votes) are eliminated. 
b. Q is defined as the set of all valid candidate bins, the ones not eliminated in 1.a.  
c. R is defined as the set of all accepted bins. This set is initialized as a void set. 

2. For each bin B in Q the following tests are applied (the procedure is optimized for 
obtaining high processing speed by applying less time consuming tests first): 

a. If the bin B has a direct neighbor in the Hough space with more votes, then 
delete bin B from Q and go to 2. 

b. Calculate rREF and rTEST, which are the linear correlation coefficients of the 
interest points corresponding to the matches in B that belong to the reference 
and test image. If the absolute value of any of these two coefficients is high, 
delete bin B from Q and go to 2. This numerical-robustness verification stage 
is explained in detail in the appendix. 

c. Calculate the fast probability PFAST to B. If PFAST is lower than a threshold PTH1, 
delete bin B from Q and go to 2. This probability test is described in [7]. 

d. Calculate an initial affine transformation TB using the matches in B. 
e. Compute the affine distortion degree of TB using a geometrical distortion 

verification test (described in [5]). If TB has a strong affine distortion, delete 
bin B from Q and go to 2.  

f. Top down matching: Matches from all the bins in Q who are compatible with 
the affine transformation TB are cloned and added to bin B. Duplication of 
matches inside B is avoided. 

g. Calculate Lowe’s probability of bin B (see description in [3]). If this 
probability is lower than a threshold PTH2, delete bin B from Q and go to 2.  

h. Apply RANSAC for finding a more precise transformation. In case that 
RANSAC success, a new transformation TB is calculated.  

i. Accept the candidates B and TB, what means delete B from Q and include it in 
R (the TB transformation is accepted). 

3. For all pairs (Bi, Bj) in R, check it they may be fused into a new bin Bk. If the bins 
may be fused and one of them is RANSAC-approved, do not fuse them and delete 
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the other in order to preserve accuracy. If the two bins are RANSAC-approved, 
delete the least probable. Repeat this until all possible pairs (including the new 
created bins) have been checked. This fusion procedure is described in [5]. 

4. For any bin B in R, apply semi-local constraints procedure to all the matches in B. 
The matches from B who are incompatible with the constraints are deleted. If some 
matches are deleted from B, TB is recalculated. This procedure is described in [13]. 

5. For any bin B in R, calculate the pixel correlation rpixel using TB. If rpixel is below a 
given threshold tcorr, delete B from R. This correlation test is described in [6]. 

6. Assign a priority to all the bins (transformations) in R. A more probable bin (in the 
Lowe’s probability sense) has better priority than a less probable one, but any 
RANSAC-approved bin has better priority than any non RANSAC-approved one. 

3   Solving RoboCup @Home Tests 

The RoboCup @Home league defines seven tests to be solved in the 2007 
competitions [18]. In three of them, complex and versatile visual object recognition 
abilities are required:  

– In the “Lost & Found” test, an object is shown just one time to the robot, then 
the object is hidden somewhere in the environment and the robot should be able 
to find it within a limited amount of time [18].  

– In the “Manipulate” test the robot must manipulate some specified objects (open 
a door, a refrigerator, get a soda can, grab a newspaper, etc) [18]. 

– In the “Navigate” test the robot has to safely navigate toward some specified 
objects in a living room environment [18]. 

These three tests put the following requirements to the object recognition system: 

– General purpose. The objects to be recognized are of different types and in 
general complex: a TV, a door handle, a newspaper, a soda can, a bottle. 
Therefore a general-purpose object recognition system is required. 

– No/Less training. In at least one of the test (“lost & found”), the objects to be 
recognized are not known by the robot before the test starts, while in the other 
two cases, the objects are not known by the participants before the RoboCup 
competitions start. Therefore, just one or two images of each object should be 
enough for a fast training and a robust characterization of the objects. 

– Near real-time processing. The tests need to be solved in a short time, and for 
solving them the object recognition system need to be applied several times (e.g. 
hundreds of frames before finding an object in an arbitrary position in a 
complex environment).Then, the images need to be analyzed in near real-time. 

These three requirements can be fulfilled using an object recognition system based 
on wide baseline matching, as the one described in the former section. As mentioned, 
this object recognition system outperforms similar ones terms of recognition rate, 
number of false positives and speediness, as it is shown in [7]. Therefore it will be 
used for implementing object recognition in the RoboCup @Home tests. 

We implemented the described object recognition system in our RoboCup @Home 
robot [19]. We have carried out several experiments for solving the “Manipulate”, 
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Fig. 1. Examples of object recognition results when the robot looks for different objects in 
different frames. In each case is shown the pair reference (left) - test (right) image. 

 
“Navigate”, and “Lost & Found” tasks, concentrating ourselves in solving the 
corresponding object recognition subtask. Some examples of object recognition, when 
the robot looks for different objects in different frames, are shown in figure 1. As in 
can be observed, our object recognition systems can successfully recognize in 
cluttered backgrounds a wide variety of objects which can appear in the lost & found, 
the manipulate and the navigate @Home tests. 

4   Robot Detection in the RoboCup Humanoid League 

In the RoboCup soccer competitions, the detection of teammates and opponent robots 
present in the scene is a key skill for good playing (e.g. passing, robot avoidance, goal 
kicking). Most existing vision systems, which use colors and depend on the 
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illumination conditions, are not robust enough for solving this task. We aim at 
reverting this situation by using the L&R system in the detection of soccer robots, 
specifically humanoid robots. 

We carried out several tests using our humanoid Hajime HR18 robot [20], and real 
video sequences processed in a notebook. The results are summarized in table 1. As it 
can be observed acceptable detection rates are obtained, however the processing 
speed should be increased, because in the humanoid league most of the robots are 
equipped with low-speed Pocket PCs as main processors (not notebooks). One 
possibility for achieving this reduction is applying this detector not in each frame, or 
using features that can be evaluated in less time (e.g. SURF [16]). 

For exemplifying the detection of humanoid robots, in figure 2 we show some 
video frames where the robot is successfully matched against the reference image. 

 
Table 1. Detection of a humanoid Hajime HR18 robot, 221 frames. Results were obtained with 
the system running in a notebook core-duo @ 1.66 GHz, 1GB RAM, running Windows XP. 

Flavor DR (%) 
Number of False 

Positives 
Processing Speed 

(fps) 
Original image size: 320x240, 80.1% 14 4.4 
Sub-sampled image: 240x170 75.1% 7 4.7 
Sub-sampled image: 160x120 64.3% 3 11.5 

 

 

Frame 24 Frame 36 

Frame 49 
 

Frame 54 

Fig. 2. Some examples of humanoid robot detection in a video sequence. In each frame is 
shown the pair reference image (left) - test image (right). 

5   Conclusions 

In this article we have described a robust object recognition system, based on the 
wide-baseline matching between a reference image (object model) and a test image 
where the object is searched. The wide baseline matching is implemented using local 
interest points (sDoG+Hessian detector) and invariant descriptors (SIFTs). The main 
novelty of the described system is the inclusion of several hypothesis rejection tests 
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that reduces largely the number of false positives, allowing the use of the system in 
real-world applications. 

The proposed object recognition system is validated in two real-world tasks, 
recognition of objects in the RoboCup @Home league, and detection of robots in the 
humanoid league. The obtained results are satisfactory in terms of detection rate and 
number of false positives, although for an application in the humanoid league, where 
most teams employ Pocket PCs as main processors, the processing speed of the 
system should be increased. We are working in this direction using some novel 
features that can be evaluated in less time, as for example SURF features [16]. 
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Appendix: Linear Correlation Test 

An affine transformation can be calculated from a set of matches between points (x, y) 
in the reference image and points (u, v) in the test image. The affine transformation 
can be represented in the following two ways: 
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From the last expression, and using least squares, the parameters of the 
transformation can be calculated from matches between points (xi , yi)  and (ui ,vi): 
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The parameters are calculable only if the 6-by-6 XT X  matrix is invertible, and this 
is possible only if X  has rank 6. If the points in the reference image lay on a straight 
line, the relations yK = a xK + b  holds, then the second and fifth columns in X become 
linearly dependent, and the matrix X gets at most rank 4. Then, if the points in the 
reference image lay on a straight line, the parameters of a transformation from the 
reference to the test image cannot be successfully calculated. In the symmetric case, if 
the points in the test image lay on a straight line, a transformation from the test to the 
reference image cannot be calculated. Then, to get a numerically-stable and invertible 
transformation, the points in the reference and the test image cannot lie on a straight 
line, i.e., the correlation coefficients of the points in both images must be low. Then 
the following test can be done to reject numerically unstable transforms: 

1. Calculate rREF, the linear correlation of the interest points in the reference image 
2. If rREF > threshold, reject the transformation 
3. Calculate rTEST, the linear correlation of the interest points in the test image 
4. If rTEST > threshold, reject the transformation 
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Abstract. In the present article a framework for the robust detection of mobile 
robots using nested cascades of boosted classifiers is proposed. The boosted 
classifiers are trained using Adaboost and domain-partitioning weak hypothesis. 
The most interesting aspect of this framework is its capability of building robot 
detection systems with high accuracy in dynamical environments (RoboCup 
scenario), which achieve, at the same time, high processing and training speed. 
Using the proposed framework we have built robust AIBO and humanoid robot 
detectors, which are analyzed and evaluated using real-world video sequences. 

1   Introduction 

In robot soccer scenarios, the detection of teammates and opponent robots is a key 
skill for good playing (e.g. passing, robot avoidance, goal kicking). However, most 
existing systems are not robust enough in the detection of other players, mainly be-
cause they are based on pure color analysis, which is very dependent on the illumina-
tion. To revert this, we have adapted our previously developed framework for face 
analysis system [8] to the task of building fast robot detector systems. This framework 
uses nested cascades of classifiers [10], the Adaboost boosting algorithm [6], and do-
main-partitioning based classifiers [6]. To our knowledge these statistical learning 
techniques have not been used before in robot detection applications.  

Using the proposed framework we have built three AIBO robot detectors (ERS7 
model), each one tuned for a different pose (frontal, profile and back), and also a hu-
manoid robot detector. The main strengths of the developed robot detection systems 
are: the ability of working at multiple scales, being illumination invariant to a larger 
degree (they work in grey scale images and no preprocessing is needed for photomet-
ric normalization), and being near real-time. 

The article is structured as follows. In section 2 some related work is outlined. In 
section 3 the robot detection framework is described. The training procedures for 
building AIBO and Humanoid robot detectors are described in section 4. In section 5 
an evaluation of the developed robot detectors is presented. Finally, in section 6, some 
conclusions of this work are given. 
                                                           
∗ This research was partially supported by FONDECYT (Chile) under Project Number 1061158. 
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2   Related Work 

Several approaches have been proposed to tackle the object detection problem. In the 
case of the RoboCup competition, most approaches for detecting robots are based on 
pure color segmentation and on the detection of contrast changes using scan lines (see 
for example [3][4]). These simple approaches are not robust enough; they are highly 
dependent on the illumination and background. In [2] is proposed a detection system 
for AIBO robots based on the use of local image descriptors and SIFT features, but its 
main limitations are its low processing speed and its reduced performance when high-
lights are present in the image, which are common in AIBO robots. However, if we 
consider other object detection problems, there are many robust approaches that are 
based on statistical classifiers [1], including systems based on neural networks, PCA 
projections, decision trees, SVM classifiers, and cascades of boosted classifiers.  

Generally, one of the main drawbacks of detection systems based on statistical classi-
fiers is that they are not real-time. The systems based on cascades of boosted classifiers, 
however, are an exception; they are very fast and accurate at the same time. The Vi-
ola&Jones classifier [9] use a cascade of filters for a fast classification, where each filter 
is trained using Adaboost, and the integral image for fast computation of the features, 
which are based on simple, rectangular features (a kind of Haar wavelets). This kind of 
classifier allows obtaining fast processing speed and high detection rates. These ideas 
are further improved in  [10], where nested cascades are introduced. Nested cascades 
reuse the confidence output of a given layer, in the next layer of the cascade, which al-
lows obtaining more compact (faster) cascades and more accurate classifications. It also 
uses domain-partitioning weak classifiers [6], which, compared to  [9], achieves an im-
provement in the representation power of the weak classifiers and reduces the process-
ing and training time. In [8] a procedure to train nested cascades of boosted classifiers 
that allows to considerably reduce the training time (from months in [9] to a few days) 
is proposed. A second improvement proposed in [8] is the use of both internal and ex-
ternal bootstrap for the training of the cascade. A third improvement corresponds to a 
criterion to automatically select the number of weak classifiers in each layer of the cas-
cades, which aims to minimize the processing time and at the same time assures a high 
detection rate and a very low false positive rate. This learning framework [8] has been 
extended in this work to the task of robot detection. 

3   Robot Detection Framework  

We briefly describe the developed multiscale robot detection framework (see block 
diagram in figure 1). First, to detect the robots at different scales, a multiresolution 
analysis of the images is performed, by downscaling the input image by a fixed scal-
ing factor --e.g. 1.2-- (Multiresolution Analysis module). This scaling is performed 
until images of about 24x24 pixels are obtained. Afterwards, windows of 24x24 pix-
els are extracted in the Window Extraction module for each of the scaled versions of 
the input image. The extracted windows could then be pre-processed to obtain invari-
ance against changing illumination, but thanks to the used of illumination invariant 
features we do not perform any kind of preprocessing. Afterwards, the windows are 
analyzed by a nested cascade classifier (Cascade Classification Module). Finally, in 
the Overlapping Detection Processing module, the windows classified as positive  
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Fig. 1. Block diagram of the detection system 

(they contain a robot) are fused (normally a robot will be detected at different scales 
and positions) to obtain the size and position of the final detections. 

Using the described framework it is also possible to detect the robots pose. To 
achieve this, detectors tuned to different robot poses/views (e.g. frontal, profile and 
back) should be trained and applied. In general terms there are two possible forms of 
applying the detectors. The first one consists in applying the detectors in parallel. 
Then, the robot pose will be given by the detector having the largest confidence value. 
The second form consists in applying first a generic detector (not tuned to any pose) 
and then, in the pose classification module, verifying the detection, and also obtaining 
the pose of the robot applying the pose-specific detectors in parallel. 

3.1   Learning Using Nested Cascades of Classifiers 

A nested cascade of boosted classifiers is composed by integrated layers, each one 
containing a boosted classifier. The cascade works as a single classifier that integrates 
the classifiers of every layer H C

k , defined as: 

k

kT

=t

k
t

k
C

k
C b(x)h+(x)H=(x)H −∑−

1

1  (1) 

with 00 =(x)HC , k
th  the  weak classifiers, kT  the number of weak classifiers in layer k, and 

bk a threshold (bias) value that defines the operation point of the strong classifier. The 

class assigned to the output corresponds to the sign of H(x). The output of k
CH  is a real 

value that corresponds to the confidence of the classifier, and its computation makes use of 
the already evaluated confidence value of the previous layers. For details on the handling 
of the tradeoff between the speed and the accuracy of the cascade classifier see [8]. 

Domain-partitioning weak hypotheses make their predictions based on a partition-
ing of the domain X into disjoint blocks X1,…,Xn, which cover all X, and for which 
h(x)=h(x’) for all x, x’∈  Xj. Thus, the weak classifiers prediction depends only on 
which block Xj a given sample instance falls into. Herein the weak classifiers are ap-
plied over features, with each feature domain F being partitioned into disjoint blocks 
F1,…,Fn, and a weak classifier h having an output for each partition block of its asso-
ciated feature f: jj Fxfcxfh ∈∋= )())(( . 
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For each classifier, the value associated to each partition block (cj) is set to minimize 
a loss function on the margin [6]. This value depends on the number of times that the 
corresponding feature, computed on the training samples (xi), fall into this partition 
block (histograms), and on the class of these samples (yi) and their weight D(i): 
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whereε  is a regularization parameter. The outputs, cj, from each of the weak classifi-
ers, obtained during training, are stored in a LUT to speed up its evaluation. The 
Adaboost learning algorithm is employed to select the features and the weak classifi-

ers (x)hk
t . We use simple, rectangular features (a kind of Haar wavelets) [9].  

3.2   Selection of the Training Examples 

Every window of any size in any image that does not contain an object (e.g. an AIBO 
robot) is a valid non-object training example. Obviously, to include all possible non-
object patterns in the training database is not an alternative, therefore non-object pat-
terns that look similar to the object are selected using the bootstrap procedure [7]. 
This procedure corresponds to iteratively train the classifier, each time adding to the 
negative training set, negative examples that were incorrectly classified. According to 
our experience, it is important to use bootstrap in both situations: before starting the 
training of a new layer and for re-training a layer that was just trained. The external 
bootstrap is applied just one time for each layer, before starting its training, while the 
internal bootstrap can be applied several times during the training of the layer. The 
bootstrap procedure in both cases is the same with only one difference, before starting 
an external bootstrap all negative samples collected for the training of the previous 
layer are discarded (see [8] for details).  

4   Training of the AIBO and Humanoid Robot Detectors 

During the training of the cascades, validation and training sets are used. The proce-
dure to obtain both sets is analogous, so only the training dataset is explained. To ob-
tain the training set used at each layer of the cascade classifier, two types of databases 
are needed: one of cropped windows of positive examples (e.g frontal AIBOs) and 
one of images not containing the object to be detected. The second type of database is 
used during the bootstrap procedure to obtain the negative examples. The training 
dataset is used to train the weak classifiers, and the validation database is used to de-
cide when to stop the training of a layer and to select the bias values of the layer. To 
obtain positive examples (cropped windows) a rectangle bounding the robot was an-
notated and a square of size equal to the largest size of the rectangle was cropped and 
downscaled to 24x24 pixels. In the case of the humanoid robots, two windows were 
cropped from each robot used during training, one corresponding to the upper half of 
the robot (torso and head) and the other to the lower part (mostly legs). This was 
made to allow the detection of either the upper or the lower part of the robot inde-
pendently (using only one detector). This information should be sufficient for a suc-
cessful detection under partial occlusions.  
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In the case of the databases used to train the AIBO detectors, the positive examples 
were obtained from videos captured using the AIBOs cameras and using external 
cameras. The videos were acquired under real-world playing conditions (variable il-
lumination, occlusions, etc.). The sources used to build the humanoids training and 
validation sets were videos obtained using the same camera employed in our human-
oid robots (Philips ToUCam III - SPC900NC), and videos from other humanoids ob-
tained from the the RoboCup Humanoid league website (Hajime, Artisti, BreDo 
Brothers, DarmstadtDribbler and ToinPhoenix). The number of images used in each 
database is shown in Table 1. 

Table 1. Summary of the databases used for training 

# Positive examples # Negative images 
Class 

 (Training)  (Validation)  (Training)  (Validation) 
Frontal AIBOs 3115 3115 5946 2550 

Left AIBOs 4263 3624 5946 2550 
Back AIBOs 1528 1528 5958 2562 
Humanoids 3506 3500 5958 2562 

5   Evaluation of the Detectors 

The detection results are presented in terms of Detection Rate (DR) versus Number of 
False Positives (FP) in the form of ROC curves (Receiver Operation Characteristic 
curves) and tables, while the pose estimation results are presented using the confusion 
matrix. An analysis of the processing speed of the system is also presented. To evalu-
ate the proposed system, two databases were used: one for the AIBOs (called  
AIBODetUChileEval) and one for the Humanoids (called HDetUChileEval). These 
databases were made available in http://vision.die.uchile.cl for future comparisons. 
No image of the training or the validation set are part of these databases. The AI-
BODetUChileEval database contains AIBOs in three poses (frontal, profile, back), 
while the HDetUChileEval database consists of images containing humanoids (from 
videos dribblers2006communication and dribblers2006Kicktrick). These images are 
from real world scenarios; containing changes in illumination, contrast, and back-
ground (see Table 2 for datils). 

The performance of the proposed robot detection systems are presented in terms of 
DR versus FP (se Table 3 and Figure 2), and percentage of correct pose classification 
(Table 4). In figure 3 selected images with detection results are shown. In the AIBOs 
database, the first test consisted in evaluating each detector independently on the spe-
cific class it was trained to detect (e.g. “Frontal” detecting “Frontal” AIBOs). In this 
evaluation, AIBOs appearing under poses different to the ones being detected were 
not counted as false positives or correct detections. The best performing detector was 
the profile detector with a 90.7% DR and 70 FP (from all 724 images). The second 
test consisted in evaluating the performance of a particular detector when detecting all 
poses, including the ones they were not trained to detect. In this case the detectors 
were able to find AIBOs in all poses, showing a reasonably good detection rate; e.g. 
the Frontal detector obtained a 90% DR of AIBOs under all poses with 392 FP. The 
third test (Multiple detectors in all AIBOs) consisted in running all AIBOs detectors 
(Frontal, Profile and Back) in parallel. Given that in some cases the three detectors 
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detected the same AIBOs, the final detections were obtained by selecting all non-
overlaying detections, and merging overlaying detections by choosing the one with 
highest confidence. It is important to notice that in this case the number of false posi-
tives slightly increased, e.g. a DR of 94.8% was obtained with 392 FP. In other words, 
it is possible to arbitrate among the output of the detectors without increasing consid-
erably the number of FP, although it is about 3 times slower than the individual detec-
tors. The humanoid detector also shows high detection rates. A 92.2% detection rate 
was obtained with 123 false positive in a total of 244 images. This is quite high con-
sidering that the system was training using examples corresponding to different hu-
manoid robot models than the ones used in the evaluation.  

The last test made was a pose classification of the AIBOs. For this, the frontal de-
tector was used as a generic detector (using the same parameters that obtained a 90% 
DR 392 FP), followed by a verification of the detections using the specific detectors. 
Afterwards, the pose was estimated by taking the output of the specific detector that 
gave the largest confidence value. Out of the 912 detected AIBOs, 657 were “pose 
estimated”, from which 519 were correctly estimated (79% correct classification rate). 
Table 4 shows the confusion matrix of the pose estimation for these AIBOs. The 
“Frontal” and “Profile” classifiers show the best results, classifying correctly 90% and 
80% of the “Frontal” and “Profile” AIBOs, respectively. 

Table 2. Summary of the evaluation databases 

Test database #Images #Frontal AIBOs #Profile AIBOs #Back AIBOs #Humanoids Image size 
AIBODetUChileEval 724 344 489 180 - 208x160 
HDetUChileEval 244 - - - 493 640x480 

Table 3. Selected operation points (Detection Rate versus Number of False Positives) of the 
evaluated AIBO and Humanoids detectors 

Detector / Target DR % FP DR % FP DR % FP DR % FP DR % FP 
Frontal /Frontal AIBOs   89.4 254 84.4 57   74.5 18 
Profile / Profile AIBOs 94.7 98 90.4 70   81.3 42   
Back / Back AIBOs   89.9 166 85.6 76 79.8 27   
Frontal / All AIBOs   90.0 392   82.9 183 73.4 95 
Multiple / All AIBOs 94.8 392 88.6  183 84.3 114 80.1 52   
Humanoids 94.8 590 92.2 123     75.9 3 

 

The processing time of the proposed detectors in the AIBO ERS7 robots was 
evaluated. ERS7 robots have a 64bit RISC Processor (MIPS R7000) from 576 MHz, 
64MB RAM, and a color-camera of 208x160 pixels that delivers 30fps. Table 5 
shows the average frame rate delivered by the “Frontal” AIBO detector in an ERS7 
robot running the full four-legged Uchile1 control library [5], and in a 1.73 GHz Intel 
Core Duo laptop with 1GB of RAM, running Windows XP. The frame rate depends 
mainly on the scaling factor, and the number scales skipped by the detection system. 
The detector still works fine with a scaling factor of 1.2 and skipping 1 or 2 of the 
first scales, which allows obtaining 6.3 fps in the AIBOs. This allows using the detec-
tor in our four-legged team, considering that it is not necessary to detect the robots in 
each frame, but every 3-7 for frames (every 90-210 milliseconds). 
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Fig. 2. ROC curves (Detection Rate versus Number of False Positives) on the AIBODetU-
ChileEval database for the Frontal, Back and Profile detectors. See text for details 

Table 4. Confusion Matrix: AIBO pose estimation using the detection system 

True Class / Predicted Class Frontal AIBOs Profile AIBOs Back AIBOs 
Frontal AIBOs 91.63 % 11.64 % 33.87 % 
Profile AIBOs 3.72 % 81.45 % 15.32 % 
Back AIBOs 4.65 % 6.92 % 50.81 % 

 

 

(a) 

 

(b) 

Fig. 3. Detection results of both detectors on the HDetUChileEval database are shown 

Table 5. Processing time of the frontal AIBO detector 

Frame Rate (in fps) in Laptop PC Frame Rate (in fps) in AIBO CPU Configuration 
scaling  1.15 scaling 1.2 Scaling 1.15 scaling 1.2 

no scale skipped 3.4 4.8 1.7 2.1 
skip 1st scale 6.7 9.1 3.5 4.9 
skip 1st,2nd scale 9.1 12.5 4.9 6.3 
skip 1st,2nd,3rd scale 11.1 16.7 6.1 7.8 
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6   Conclusions 

A framework for the robust detection of mobile robots using nested cascades of boosted 
classifiers was proposed. This framework was used to build robot detectors (Humanoids, 
and Frontal-, Profile- and Back-AIBOs). The main module of the system corresponds to a 
nested cascade of boosted classifiers, which is designed to perform fast detections with 
high DR and very low FPR. Using this cascade classifier, an exhaustive multiscale search 
is performed to be able to detect the robots appearing at different scales and positions. The 
detection rate of the obtained systems is quite high; for example a 90% DR with an aver-
age of 0.1 false positives per frame (208x160 pixels) is obtained for the “profile” AIBO 
detector, and a 92.2% DR with 123 false positives in 244 images (640x480 pixels) is ob-
tained for the Humanoid detector. This shows that the detectors are working with high 
performance in difficult environment, and still maintain good results. Even thought the 
detection system was not designed to estimate the pose of the AIBO robots, it was possible 
to estimate it with a good accuracy in the case of the AIBOs. For example, the system 
correctly estimated the pose in 79% percent of the detected and verified AIBOs. 

The main disadvantage of the detectors is that they achieve relatively low frame 
rates (e.g. 6.3 fps running in the AIBO robots). Nevertheless they can be improved in 
several ways. First, it is not necessary to detect the robots in each frame, but every 3-7 
for frames (every 90-210 milliseconds). The processing time and the number of false 
positives can be greatly reduced by adding the use of color-based methods and infor-
mation about the location of the robot in the field (by reducing the search region 
area). The system can be further improved by performing a tracking of the robots. 
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Abstract. Recent successful SLAM methods employ hybrid map rep-
resentations combining the strengths of topological maps and occupancy
grids. Such representations often facilitate multi-agent mapping. In this
paper, a successful SLAM method is presented, which is inspired by the
manifold data structure by Howard et al. This method maintains a graph
with sensor observations stored in vertices and pose differences including
uncertainty information stored in edges. Through its graph structure,
updates are local and can be efficiently communicated to peers. The
graph links represent known traversable space, and facilitate tasks like
path planning. We demonstrate that our SLAM method produces very
detailed maps without sacrificing scalability. The presented method was
used by the UvA Rescue Virtual Robots team, which won the Best Map-
ping Award in the RoboCup Rescue Virtual Robots competition in 2006.

1 Introduction

Simultaneous Localization and Mapping (SLAM) is a vital technology for au-
tonomous mobile robots. Using a SLAM algorithm, the robot can keep track of
its location by maintaining a map of the physical environment and an estimate
of its position on that map. This provides a spatial context for the interpretation
of current and past observations and enables higher level reasoning, control, and
coordination. The map delivered may also provide an intuitive representation
with which the robot can convey its findings to humans. For this purpose the
visualization of the map may be augmented with any kind of extra information
that the robot is able to infer.

As described by Thrun [1], SLAM algorithms can be roughly classified accord-
ing to the map representation and the employed estimation technique. A very
popular map representation is the occupancy grid [2]. Grid-based approaches
typically require a large amount of memory, however they are able to represent
the environment at arbitrary resolution and thereby have the potential to be
highly detailed.

Graph-based representations on the other hand primarily map the topology
of the environment. This results in a much more compact description and makes
graph-based maps an attractive alternative when scalability to multiple robots is
� Formerly International University Bremen.

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 457–464, 2008.
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a concern. The low memory requirement of graph-based maps allows for low-cost
information sharing between multiple robots, e.g. via a wireless network. Also,
as topological graphs provide a direct description of the free-space regions and
their interconnectedness, they significantly facilitate path planning algorithms.
A disadvantage of such maps is that localization is limited to the nearest node
due to the lack of more detailed information. Additionally, this absence of low-
level geometric information precludes the rendering of detailed visualizations.

Given the individual strengths and shortcomings, researchers have tried to
combine multiple representations in hybrid approaches [3,4,5,6,7]. These are po-
tentially as scalable as topological approaches, and at the same time provide the
same geometric detail as grid maps.

In this paper we present a hybrid SLAM method that combines grid-based
and topological representations. The underlying data structure exhibits both de-
sired properties: Our method produces highly detailed maps without sacrificing
scalability. As part of our research presented in this paper, we participated in the
Rescue Virtual Robots competition in the RoboCup World Championships of
2006 [8] where we demonstrated the presented approach. Our system supported
teams of up to 8 robots that searched the computer-simulated emergency site
[9,10] and jointly constructed a map of the environment. Our maps ranked high-
est after being evaluated on a number of aspects as described in [8] and earned
the Best Mapping Award.

2 The Data Structure

The data structure the presented method is built on is inspired by the manifold
concept conceived by Howard et al. [7]. It is a layered data structure with a
topological organization at the global level and small detailed metric maps at
the local level. Sensor observations are not integrated into small grid maps as
done in other current approaches [5], but kept as raw data in the nodes for later
processing. Edges represent known connections between poses where these sensor
observations were made and contain a transformation between these two poses.
Additionally, uncertainty information about these transformations are stored in
the edges.

Such a data structure is a very natural observation-centric formulation of a
map. It also explicitly includes the important factorization that was the key in-
sight used in FastSLAM [11]: Sensor observations are conditionally independent
given the robot path. The observations are kept explicitly connected to the easily
correctable path encoded in the graph.

Effectively, the sensor data stored in a node is a self-contained piece of infor-
mation. This means that node poses can be updated without much computa-
tional overhead, which is in direct contrast to grid-based maps. Also, the usual
slight update of pose differences does not invalidate associated sensor readings
or the general map integrity. The map stays usable for many algorithms, like
path planners.
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Formally, the map m consists of a set of local sensor observations {π}, and a
set of links {φ}, with

φ = {i, j, δ, Σ}
where i and j are the indices of the two observations which are linked, δ is the
estimated pose difference, and Σ is that estimation’s covariance matrix.

For the multi-robot scenario, similar benefits apply. The displacement infor-
mation present in the links is independent of any global coordinate frame, so
collaborating robots can easily exchange parts of the graph without further pro-
cessing.

3 Single-Robot SLAM

Given the above data structure, the main challenge is to gather the information
necessary to construct the links φ.

Like in most current SLAM methods, a laser range scanner is used as the
main source of mapping information. Odometry measurements are not used, the
method exclusively relies on scan matching to estimate a robot’s displacement.
Thus, no explicit motion model must be developed. The corresponding covari-
ance matrix can be computed either by sampling as described in [12] or directly
from the scan matching result [13,14].

As long as the uncertainty is low enough, the information in the map is used
to get an estimate of the current location. When new sensor data arrives, the
scan matching algorithm is used to compare the current range scan to the scan
stored at the current node. This results in a new location estimate. At the
moment the uncertainty for the scan matching operation increases, a new node
is created to store the current scan and a new link is created containing the
latest displacement estimation.

We chose the Weighted Scan Matcher (WSM) by Pfister et al. [14], which
belongs to the Iterative Closest Point (ICP) family. The IDC scan matcher by
Lu and Milios [15] belongs to the same family and has been the most popular
ICP scan matcher. However, WSM is known to outperform IDC significantly in
both accuracy and speed, given that dense range scans are available [14]. In [16],
we produced similar results in an extensive set of experiments specific to the
simulated environment at the RoboCup Rescue Virtual Robots competition. In
addition, computing the covariance matrix of the displacement given by WSM
is easy.

Given the data structure and a means to acquire the needed displacement
estimate, a näıve implementation would result in incremental SLAM. Without
any further processing, a new laser range scan could be matched against the
previous one (or a set of previous ones) and added to the graph. However, this
often results in accumulated error, as shown in Figure 1a.

The main manifestations of this error are inconsistencies in overlapping map
regions where the robot travelled in a loop. Overlaps in our map representation
can be detected via feature extraction and comparison on a node by node basis,
by mutual observations of robots in a multi-agent setting, or by re-observing
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artificial or natural landmarks. Due to error accumulation, the two position
estimates of the overlapping regions are not likely to project to the same global
coordinates.

In the USARSim [9,10] simulator used in the RoboCup Rescue Virtual Robots
competition, victims and robot-placable RFIDs were uniquely identifiable. This
made them perfect unique landmarks, and thus a great and reliable shortcut to
loop detection.

Loop-Closing is the main way to reduce the accumulated error in the map. A
new link is inserted into the graph by computing the displacement between the
two overlapping nodes. The inconsistency introduced by the new link has to be
resolved by incorporating this new information into the graph as a whole.

Re-matching each node to its respective neighbors incrementally, starting from
the new link, produces good results and has been used in the literature before
[7]. Figure 1b shows the corrected map using this approach.

It is also possible to close loops by optimizing the estimated global positions
of graph nodes such that the estimated displacements stored in the links apply
best to all nodes. Here, the probability distribution formed by the initial pose
estimate δ and its covariance matrix Σ can be used to evaluate how good a
certain global positioning fits a given link, as shown by Olson et al. [17].

4 Multi-robot SLAM

A graph-based map can be very easily shared with and communicated to collab-
orating robots. Only new nodes and corresponding links have to be transferred
over a network connection to communicate map updates completely. New data
only needs to be appended to the graph and connected to the right nodes. Scan
matching does not have to be performed again.

Keeping multiple disconnected maps in memory is problematic in other suc-
cessful SLAM methods. In the context of the graph however, this is trivial.
We allow the graph to contain multiple disconnected components, one for each
robot. Similarly, it is possible to start a new disconnected component when a
robot looses track of its location, for example after falling down stairs. This is
also an attractive solution to the “kidnapped robot problem”.

The main challenge is merging the disconnected partial maps in a meaningful
way. Incidentally, this process is very similar to loop closing. The same techniques
can be used to detect overlaps in two disconnected maps. Map merging is done by
computing a transformation between the two overlapping regions once by scan
matching. Subsequently, one of the two maps is transformed as a rigid body and
moved so that the two overlapping parts fit. Optionally, a loop closing operation
may be run to refit the two maps for improved accuracy. An example is shown
in the bottom of Figure 1.

Closing loops and merging partial maps can be delayed without impacting
the continuity of the map. Only some collaboration has to be sacrificed for
this significant reduction in immediate computational requirement. Some robots
may explore the same area twice or may take less efficient routes through the
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(a) Before Loop Closure (b) After Loop Closure

(c) Overlaid maps (d) Aligned and refitted

Fig. 1. Loop Closing and Map Merging

environment if maps are not merged immediately. However, map integrity is
never at risk. This is interesting for Urban Search and Rescue as deferring these
expensive operations saves time that can be used to further explore the emer-
gency site. It is an open research question to decide when, and if, such operations
should take place.

During the RoboCup Rescue Virtual Robots 2006 competition, and prelimi-
nary trials in the lab, our method was able to map a simulated area with up to
8 concurrently running robots. This high scalability in the multi-robot setting
is mainly due to the above mentioned trivial map updates and deferrability of
costly mapping operations.

5 Results

In this section, we show sample maps generated by our presented method for both
simulated and real data. Simulated data was taken from the USARSim simulator
used in the RoboCup Rescue Virtual Robots competition in 2006 [8,9,10]. The
real robot data comes from a publicly available data set from the IROS 2006
Workshop “From sensors to human spacial concepts” [18].
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(a) Indoor map (b) Outdoor map

Fig. 2. Some maps produced during the competition

5.1 RoboCup Rescue Virtual Robots Competition 2006

During the competition the maps provided by the participating teams were
judged on their quality. The quality score had two components, a metric quality
which was scored automatically and a topological quality which was assessed
manually. The basis for the topological quality was how well the map corre-
sponded to the actual environment, supplemented with bonuses for the utility of
the map for a first responder. Utility increased with the ability for a person to
determine which areas had been searched, where hazards may be located, and
where victims were found. The more additional information was depicted on the
map, the better the utility.

During the three qualification rounds (denoted by Q1-Q3) we managed to
qualify for the semi-finals (denoted with Semi1 and Semi2). In these last two
rounds our team of robots produced the maps displayed in Figure 2. A jury
assessed the topological quality of our maps. In the competition, we achieved the
maximum quality score by displaying very accurate and highly detailed maps.

The metric map quality was based on how well some artificial landmarks were
localized. Our method achieved a root mean square (RMS) localization error of
0.2m and 0.02m.

Subsequently, our team received the Best Mapping Award from the Virtual
Robots competition as a special recognition of the high quality of our maps.

5.2 Results on Real World Data

The Cogniron data set [18] has been published on the Radish website [19]. The
data-set has been acquired using a Nomad Scout robot in a home environment.
The maps produced by our algorithm for this data-set are based exclusively on
the laser range data, which were recorded using a SICK LMS-200 laser scanner.

Two maps generated from this data-set are shown in Figure 3. The odom-
etry information was not used when constructing the maps. It should also be
noted that our loop closure algorithm only works with landmark observations
that could be acquired in the USARSim simulator. We have not implemented
any detection algorithm for other landmarks or loops in general, so the maps
presented were generated without explicitly closing any loops.

The Cogniron data set also includes the sensor logs for a run in which the
robot traversed three loops. Despite these loops, and still without using odometry
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(a) Single Loop (b) Three Loops

Fig. 3. Corrected maps of the Cogniron data-set. The maps show very high detail by
preserving small obstacles such as chairs and vases.

data or explicit closing loops, a highly consistent map is produced which is of
comparable quality to the one of the former run.

6 Conclusion and Future Work

We presented a hybrid SLAM approach that combines grid-based and topological
maps. Our approach thereby exhibits the best of both: Highly detailed maps are
learned without limiting scalability to many robots.

Our system was used in the computer-simulated emergency sites of the Rescue
Virtual Robot competition at the RoboCup World Championships of 2006, where
it supported teams of up to 8 robots. The maps produced by our system earned
the Best Mapping Award at this competition. Our experiments with real data
show that these results carry over to real-world situations.

The presented work can be intuitively extended into 3D in the future. The
graph structure, as well as all other algorithmic details presented, would remain
unchanged, only a 3D scan matcher is needed.

Further research should investigate how current exploration algorithms can
be adapted to work well with graph-based maps. This includes efficient ways
to compute important information like frontiers [20]. Explicitly including meet-
ing points in the plans to facilitate the active detection of overlapping regions
and loops would significantly improve the resulting combined maps. Existing
algorithms for grid maps might still apply with slight modifications.
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Abstract. Measurement of the real distribution of pressure under the foot is an 
important challenge to obtain an efficacious stability control and a real dynamic 
walk. This paper is the result of the work of two students in mechanical and 
mechatronic engineering who have built a force sensor using a diaphragm 
pattern mounted on a deformable circular plate. The result of this study is a 
cheaper but accurate force sensor that will be mounted on the humanoid robot 
“I-2” of Politecnico di Torino. The design of the sensor in centred to analyse the 
deformation of a circular plate loaded at the center considering various edge 
conditions. It begin from the structural analyse of the plates considering 
different loads and edge conditions to obtain a deformation model as near as 
possible  to reality. Final goal will be to obtain an output voltage proportional to 
the deformation of the plate. 

Keywords: Circular plate, Loading condition, Edge condition, Strain gage. 

1   Introduction 

During development of new humanoid robot prototype “I-2”, one of principal goal is 
to make a foot able to integrate four force sensors, one on each corner.  

In order to obtain an efficient dynamic walk, the sensor must be accurate and with 
low hysteretic losses. Actual load-cells are big or heavy for this kind of application, 
and miniaturized sensors are too delicate for this use. After several tests a small 
deformable circular plate has been selected as part of this sensor. A small strain gage 
has been applied on the surface of the plate, in order to measure the deformation. 

The design of the sensor is focused to analyse the deformation of a circular plate 
loaded at the center considering various edge conditions. It begin from the structural 
analyse of the plates considering different loads and edge conditions to obtain a 
deformation model as near as possible to reality. 

Strain gage output is amplified by a small circuit mounted on the surface of the 
foot. In the end the complete sensor will provide a reasonable output voltage. 

2   Symmetrical Bending of Circular Plates 

Considering an element of the plate delimitated by the two meridian plane rotated of 
ϑd  and two cylinder of radius r e r+dr respectively and imaging that plate is charged 
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with a dispensed load q, the element will be affected by flexing moments and cut 

strains on its board. Radius of plate curvature in rz plane is rR , radius of plate 

curvature in ϑ z plane is ϑR . Unitary percentage deformations can be obtained: 

furthermore, for both planes, correspondent stress values are shown in (1). 
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In (3) flectional stiffness module for a plate with thickness h is expressed. The 
curvature radius Rr and Rθ if plate and load q present axial symmetry (q is 
orthogonally distributed respect considered plate) are tied trough inclination angle 
ϕ. Inclination angle is expressed in (4). 

 

 
Fig. 1. 
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rr is curvature radius of surface on  rz  plane. The curvature radius θζ in the point P 
correspond to the curvature radius in θz plane which coincides with the principal 
curvature in the plane that contains the perpendicular to surface in point P and is 
perpendicular to the rz plane. Principal curvature ρθ  in θz plane for Meusnier’s 
theorem is the distance PQ and correspond to rPQr == ϕϕϑ sinsin . 
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Now unitary deformations can be written as in (7). 
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The point P is interested by a variation of r equal to b=zϕ, so the circumference that 

was rπ2  after deformation is ( )br +π2 . ϑε  and rε  can be extimated as in (8). 
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During deformation, lateral walls of the place remain inside the space delimited by 
meridian planes that contain z axis of the plate and form between them ϑd  angle. If 

the rotation ϕ  of the plate’s element should be rigid, there will be the same ϕ
ρ

 

rotation in both of element’s faces. In deformation, faces remain inside meridian 

section: they will be affected only by the normal component of ϕ
ρ

 rotation indicated 

with ϑϕ . This component has to be nullified, for this reason there is a relative rotation 

between the two lateral faces. After calculation of the curvature of elements with 

radius ϑr , equations shown in (2) can be changed as follows.  
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From rotation equilibrium around tangential direction, expression (16) is valid. 

Also, replacing rM  e ϑM  in (11), (12) is obtained. 
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3   Circular Plate Loaded at the Center 

When rQ  is represented by a function of r, equation (12) can be integrated without 
any difficulty in each particular case. For our application we consider the case of 
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bending of a plate by shearing forces 0Q  uniformly distributed along the inner edge. 

From the value of shearing force per length-unit of a circumference of radius r and 
from (12) deflection is found after an integration. Constants of integration can be 
calculated from boundary conditions.  
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Slope and deflection at any point of the plate are now calculable. In the limiting 
case where b is infinitely small, b2 log(b/a) approaches zero and the constants of 
integration change. In this particular case, a value for w  is obtained in (16). 
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This coincides with the deflection of a plate without a hole and loaded at the center. 
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Fig. 2. 

 

Applying one of the boundary condition it is possible to obtain the value of the 
deflection at any point of the plate shown in fig. 2. 
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4   Mechanical Details 

The mechanical structure of the sensor is made directly on the foot and needs only a 
steel-made dowel stuck with Henkel-Loctite 638 into an aluminium alloy cylinder to 
prevent buckling effect.  
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Fig. 3. Sensor unit 

5   Electronic Parts 

5.1   The Strain Gage 

The sensor used to measure the deformation is a strain gage with a full-bridge 
diaphragm pattern, an N2A-06-S102H-350 by VISHAY. Its internal circuit is presented 
in fig. 4. 
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Fig. 4. 
 

5.2   Pre-conditioning Circuit 

In order to use this sensor with a reasonable output range a ±5V DC dual power 
supply is provided between pin 1 and pin 4. Also, a short circuit is needed between 
pin 1 and 2 and a trimmer has been connected between pin 5 and 6. This trimmer 
allows balancing temperature-dependent offset and other offsets of the system, setting 
a 0V output when the force applied is 0N. The value of this trimmer has to be 
comparable with the values of internal resistances of the sensor. For test a 10Ω 
multiturn trimmer has been used. Output is a differential voltage, proportional to the 
deformation of the plate and so to the linear force applied; amplification needs to be 
projected, because the mean value of the voltage, assuming mean input force to be 
70N, is about 1mV – 1.5mV. 

5.3   Amplification 

A differential OPAMP, device INA118, has been used for a first treatment of sensor's 
output signal. Besides that, a linear amplification with a non-inverting TL081 circuit 
has been made. INA118 is used with a gain resistor of 560Ω. A 2.7μF capacitor has 
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been put between output and reference pins, to obtain a pole around 100Hz. 
Furthermore, a TL081 circuit has been used in non-inverting configuration, giving 
static relation in (18). 
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A capacitor put in parallel with the 22kΩ resistor forces the system to have a low-
frequency pole at about 10Hz; that is to avoid most of the noises and the force spikes 
that are not useful for measures. High-frequency poles of the system are neglected. 
Complete electronic part scheme is presented in fig. 5. 
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Fig. 5. 

6   Results 

A characteristic curve of the system has been plotted from test measures. An Ergal 
(Al7075) rectangular plate (weight 0.2Kg, 64mm x 80mm x 15mm) has been used to 
put some iron weights on the measure sting of the sensor. 

The INL (integral non linearity error) is the measures we took is 20.4mV, and we have 
the maximum non linearity around 90N input. Making a very small saturation of the first 
values around the origin, we can consider (19) as final characteristic of the sensor. The 
(19) is the equation which should be implemented in a sensor reading system. 

mFkVOUT +⋅=    N
mVk 1.18=    mVm 98.1−=  (19) 

Main source of error of the system is the trimmer; its screw could be very sensible 
to shocks and variations of ambient temperature. 

That is why a small value trimmer was used, however it could be valuable to 
calibrate the sensor every time you use it. 
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Fig. 6. Real (blue) and linear (red) response. X-axis is input force on dowel [N], Y-axis is 
output voltage [V]. 

The recommended range of temperature is 0 C° - 50 °C: inside this range sensor and 
amplifiers works with a linear behaviour. We saw also some hysteresis problems with the 
sensor, but this is considered not significant in low and high conditions of load, and has 
got a peak of 20mV in a medium range of load. This means that if we consider a sensor 
resolution of 1N our system is strong against hysteresis and other offsets and errors. 

7   Conclusions 

For a dynamic analysis we remand to future developments of this system. Considering 
the good output range of the system, the large input force range (good for an 
humanoid robot but also for other small-medium environments) and the good linear 
characteristic, we find out that this could be a  sensor and electronic conditioning part 
used in many fields. 
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Abstract. This work describes a new segmentation method for robotic
soccer applications. The approach called crossed-line segmentation is
based on the combination of region classification and a border detec-
tor which meet homogeneity criteria of medians. Experiments suggest
that the method outperforms traditional procedure in terms of smooth-
ing and segmentation accuracy. Furthermore, existing noise in the images
is also observed to be reduced without missing the objects’ borders.

Keywords: Color-based Segmentation, Robotic Vision, BLOBs.

1 Motivation

In the context of the RoboCup 4-legged competition, one of the challenging issues
has been the dependence of the image segmentation methods on variations of the
lighting conditions on the playfield [2]. Despite the fact that official competitions
are held in highly controlled lighting, moving people, shadows, etc significantly
affect the accuracy of the segmentation methods.

Most of the segmentation strategies [3,1,7] separate the color space by defining
areas in which a single color can be identified. However, previous research [2]
suggests that a huge amount of color sharing areas in the space depends on
lighting conditions.

In this work, a new strategy for color-based segmentation which is a combina-
tion of the methods described above is proposed. This uses crossed-line filtering,
with a special focus on efficiency issues. Thus we are able to provide effective seg-
mentation at real-time rates. The approach shows several advantages whenever
environment conditions do not allow using LUT segmentation properly including
its better tolerance to lighting conditions and noise.

This paper is organized as follows: in section 2 the main issues and methods for
color-based segmentation in robotic soccer vision system are discussed. Section 3
outlines our new approach to crossed-line segmentation. In section 4, we describe
the performance of a system using the method and comparative assessments
� This research is partially sponsored by the National Council for Scientific and Tech-

nological Research (FONDECYT, Chile) under grant number 1070714 “An Inter-
active Natural-Language Dialogue Model for Intelligent Filtering based on Patterns
Discovered from Text Documents”.
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with other representative segmentation methods. Finally, some conclusions and
further issues are drawn in section 5.

2 Related Work

Most of the color image segmentation methods require a significant amount of
processing which is out of reach on the robots due to demanding speed require-
ments. For this, these methods use a Look Up Table (LUT) that makes reference
to a single color value based on the value of one pixel of the target image [4,7].
Accordingly, the number of referenced values becomes less than the total number
of colors. One problem with using LUT is that in order to make the processing
faster, a big amount of additional memory is required.

Color-based segmentation has been tackled by using decision trees based clas-
sification techniques [7]. In particular the C4.5 algorithm is applied to separate a
multi-dimensional space into different color classes in the Y UV space. This uses
previously classified pixels so as to isolate and generalize each generated cluster.

Because of these issues, adaptive segmentation techniques have shown to be
promising for RoboCup. In particular, Support Vector Machines (SVM) have
been used to clasify each color class separately. A single class is used to avoid
classification errors as each sample to be segmented represents only a part of
the space. SVM-based segmentation showed better results than LUT filtering
by reducing errors in almost 18%. However, its tolerance to lighting changes has
not been proved yet.

Overall, most of these segmentation methods require a set of samples consist-
ing of preclassified colors extracted from representative images on the playfield’s
conditions. This process does not only take hours but also generates few samples
of the candidate pixels obtained from the camera during a game. LUTs used
by segmentation methods show huge gaps between points of each color class
hence segmentation tries to generalize (i.e., spreed the points’ influence) most of
the sample set without missing the shape or the relation between each class.
The idea here is based on the fact that for points belonging to a color class, the
probability that their surrounding points are in the same class is high.

3 A New Crossed-Line Segmentation Method

A new color-based segmentation method is proposed for the 4-legged RoboCup
competition. In order to assess its effectiveness, the procedure was compared with
two traditional color-based segmentation strategies based on the results obtained
from previous RoboCup 4-legged competitions: boundary (limit) segmentation
and spatial influence segmentation [4].

Our proposed method, called Crossed-line Segmentation is based on region seg-
mentation but uses a median-based homogeneity criterion and a color-difference
border detector. The method works under the assumption that average points
tend to be more stable than separated points providing that images are very noisy
in spaces where regions of the same color can be identified.
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In order to reduce noise, the method scans an image at one direction from
one side to the other by assigning the average value of the same color to each
point. The procedure stops whenever significant changes on the line are found.
The crossed-line segmentation is so described as follows:

ALGORITHM Crossed-Line Segmentation
INPUT: image with features width (n), margin (m), median (Xc)

points of one line of the image {x1, x2, ..., xn−1, xn}
current position (i), starting point of the sequence (i0)

Segmentation starts at position i = 1
(1) Xc = xi,

∑
c = xi, i0 = i

(2) IF i ≤ n THEN
i = i + 1
GOTO (3)

ELSE GOTO (4)
(3) IF |Xc − xi| > m or (i is a border point) THEN

∀x ∈ {xi0 , ..., xi}, x = Xc

GOTO (1)
ELSE

∑
c =

∑
xi0 , ..., xi, Xc =

∑
c : (i − i0)

GOTO (2)
(4) FOR ALL x ∈ {xi0 , ..., xi}, x = Xc

Advance one line
GOTO (1)

END

The margin (m) is experimentally defined and the border (step (3)) is detected
by using the border detector operator. Although the procedure works for one
channel, this can also be applied to three YUV channels by computing the sums
and averages for each channel. Whenever the absolute value of the difference
between the median and the point exceeds the margin for the three channels,
the median value is assigned to the predecessors of each channel. Once the image
is segmented, compression is carried out by using RLE.

Applying this method has a smoothing effect on every point not meeting
the separation rule. The procedure also complies with the region segmenta-
tion conditions [6] in which every point belongs to a surrounding region only
if |Xc − xi| > m and this is not at the image’s border.

The problem with using one direction (either horizontal or vertical) is that the
average for one direction may be different from that for the orthogonal direction,
though the color-based segmented with this average is likely to be the same. To
deal with this issue, the strategy is applied twice at different directions and the
result of each scan is stored into a temporary image containing the averages
(figure 1). Furthermore, the algorithm’s behavior is the same for the three cases.
Results of the segmented image can be seen in figure 1. In order to define the
margin m, different testings were performed by filtering three representative
images. These represent the ball at one of the corners, a landmark and the ball
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Fig. 1. Different applications of Crossed-line Segmentation: left to right, and down-
wards

in front of one arch. For every image, the margin’s value is increased and the
number, width and height of the BLOBs (Binary Large Object) representing the
amount of noise is recorded.

Results of these experimental settings suggest that the method gets stabilized
between margin values 20 and 70. For values above 70, width and height values
get unstable. The margin should be kept big enough to reduce the noise and
small enough to avoid removing small areas of interest, hence the margin used
for our competition has been set to 25.

The influence of the border filter on the crossed-line segmentation was also
assessed. For this, the previous three images were used again and the parameters
used to set the margin were kept.

The method with and without border detection shows similar stable behaviors
for the same margin settings (20-70). All the graphics show that width and height
values are almost the same for the range 20 to 70. Both criteria become unstable
whenever the margin exceeds 70. However, using borders shows better and stable
behavior for values above 70, whenever the detection quit providing information
on the differences of medians. For the remaining experiments, the method using
the border detector was evaluated as this satisfies the region segmentation rules
[6]. It is important to highlight that time efficiency was not an issue as the time
spent by this operator is not significant for the current testings.

4 Comparative Experiments

In order to evaluate our crossed-line segmentation method and compare it with
other segmentation methods, several experiments were carried out under differ-
ent lighting conditions: fixed and variable. The aim was to assess metrics such as
segmentation accuracy, noise and light tolerance, etc. Each method analized 41
images, scenarios and locations in which each SONY AIBO Robot gets involved
during playing time. In addition, segmentation for 17 images using variable light-
ing, different from the previous set of images, was also considered.

Each segmented image was characterized based on numeric information ob-
tained from the BLOBs representing color areas of interest. The target data
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included the number of BLOBs for every image, the number of BLOBs of
a specific color, average width and height of the generated BLOBs, and the
width and height of the biggest BLOB in the image. To assess the existing
methods under ideal conditions, a list of manually defined BLOBs was defined.
Next, crossed-line segmentation was compared with the median-filter segmenta-
tion by applying a 5x5 filter on the points of the image. This was then segmented
using the LUT technique. Because of the method’s image smoothing by using av-
erage values of a set of pixels, the results were roughly similar to the median filter.

In order to compare the proposed strategy with traditional median filters, a
configuration setting was used by applying a 5x5 media filter on the image’s
points and then had it segmented via LUT. For the experiments, a set of im-
ages extracted from several localizations on the playfield was obtained [7] with
different features.

Results of applying different segmentation methods for under fixed lighting
can be seen in figure 2. Both LUT and boundary segmentation generate big
amounts of noise, and a huge number of average BLOBs above 200 for each image
with a average size of 5x5. Median filtering and LUT segmentation produced
almost no noise because the image has been slightly smoothed above the median
filter’s value.

(a) (b)

(c) (d)

Fig. 2. Segmentation using fixed lighting: Average number of BLOBs per image (a),
Average Width and Height of the BLOBs in pixels (b), Average Radius of BLOBs (c)
and Average height of the Biggest BLOB (d)
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(a) (b)

(c) (d)

Fig. 3. Segmentation using variable lighting: Average number of BLOBs per image (a),
Average Width and Height of the BLOBs in pixels (b), Average Radius of BLOBs (c)
and Average height of the Biggest BLOB (d)

Crossed-line segmentation shows a similar behavior on noise reduction having
1/3 less of BLOBs than LUT segmentation alone. Both methods have the same
average size of BLOBs, bigger than LUT and limit segmentation, which is due to
the existing noise reduction: median filtering tends to concentrate big amounts
of noise and transform this into solid areas by joining noise points which were
previously separated.

Colorimetric distortion affected all the tested methods being the limit seg-
mentation that having the worse performance. Figure 2(c) shows a median
close to 174 blue BLOBs per image even when the ideal amount is less than one.
This effect can also be observed for generalized LUT segmentation. Graphics in
figure 2(c) also shows that settings for the median filter and the crossed-line
segmentation have a smaller media value for blue BLOBs as small noise areas
are concentrated into bigger regions and so low-intensity noise is removed by the
filter. In addition, bigger decreases in line segmentation may be due to the fact
that most of the classified points (i.e., blue for LUT segmentation) have been
classified using colors not included in the table (i.e., black areas).

As for the height and width of the biggest BLOBs, line segmentation proved
to get values closer to the ideal, whereas for limit segmentation, because of bigger
areas of blue, the method produced width values that are far from the ideal sizes.
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Variation in size can also be explained in terms of colorimetric distortion of blue
which increases the BLOBs size.

Sampling using variable lighting showed a behavior similar to the previous
case despite the fact that the quality of segmentation for each method decreased
significantly. One explanation for this is the big changes of lighting conditions
produced by the influence of sunlight on all the areas of the playfield.

A significant increase in the number of BLOBs for both limit and LUT segmen-
tation (almost 200 BLOBs per image) can be seen at figure 3(a). Colorimetric
distortion had an impact on the increase of the quality of BLOBs as seen at
figure 3(c). However, some areas of the playfield are identified with incorrect
colors caused by sunlight which, in turn, allows the green playfield area to be
classified using white, blue and yellow colors. It is also important to stress that
the average size of the biggest BLOBs for linear segmentation gets closer to the
ideal size as for the previous samples. Unlike the median filter which smooths
the border making their definition difficult by modifying their size, our approach
generates an accurate segmentation for the border of the objects in the image.

5 Conclusions

A new method for image segmentation using a crossed-line filtering strategy
was proposed. The approach shows several advantages whenever environment
conditions do not allow using LUT segmentation properly. Under noisy images
segmented via LUT, the method smooths most of the noise, specially in bigger
areas of the same color. Other promising feature is its ability to remove noise
from images with no loss of quality of the objects’ borders.

This advantage is specially useful for RoboCup because for images very distant
from arches and landmarks, a difference of 2 or 4 pixels may produce several cen-
timeters of error in localizing objects. Unlike traditional smoothing techniques,
our method does not only avoid border blurring problems but this stresses them.
This is a key issue in RoboCup as for images very distant from arches and land-
marks, a difference between 2 and 4 pixels may imply several centimeters of error
to localize the objects. One of the drawbacks is that the strategy tends to erro-
neously classify smaller color areas or those with slight changes from one color to
other as points show differences between colors that are lower than the selected
margin. The procedure to analyze a full image runs on linear time and is very
similar to spatial methods such as median filters. In addition, although all the
segmentation methods are affected by colorimetric distortion, the crossed-line
proved to be less subject to these variations.
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Abstract. The joint controllers used in robots like the Sony Aibo are
designed for the task of moving the joints of the robot to a given position.
However, they are not well suited to the problem of making a robot move
through a desired trajectory at speeds close to the physical capabilities
of the robot, and in many cases, they cannot be bypassed easily. In this
paper, we propose an approach that models both the robot’s joints and
its built-in controllers as a single system that is in turn controlled by a
neural network. The neural network controls the entire trajectory of a
robot instead of just its static position. We implement and evaluate our
approach on a Sony Aibo ERS-7.

1 Introduction

Commercially available robots like the Sony Aibo usually come with built-in con-
trollers that are designed to allow precise control over the robot’s joint positions.
In many applications, however, the goal is not simply to make the robot move
to a given position, but rather to make it execute a given motion, i.e. to control
the robot’s position at all points in time. Furthermore, tasks like robot soccer,
in which speed is an important factor, require the robot to execute motions like
walks or kicks both precisely and at speeds close to the physical limits of the
robot’s effectors. The built-in controllers that come with robots like the Aibo
are not designed for this task.

Most approaches that would allow precise control over a robot’s motion require
exact knowledge of all properties of the joints and motors involved, as well as the
ability to bypass the built-in controllers and access the robot’s effectors directly.
Inexpensive, commercially available robots like the Sony Aibo usually do not
meet these conditions.

In this paper, we explore an alternative approach to the problem, which uses
neural networks that learn to predict the commands that are necessary in order
to make the robot execute a predefined motion. The robot and its built-in joint
controllers are both treated as part of system to be modeled. We implement and
evaluate the proposed approach on a Sony Aibo ERS-71.
1 http://www.aibo.com
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2 Background

Standard control theory [1] focuses on the task of finding a controller H that,
given an observation of the state x of a system, provides an appropriate action

1

2

3

Fig. 1. A Sony Aibo ERS-7. The ar-
rows point to the shoulder (1), abduc-
tor (2), and knee joint (3) of the Aibo’s
right front leg.

at every time step such that the system
eventually reaches a given target state.
This paper considers the goal of enabling
a robot to accurately execute a desired
movement: a trajectory through its state
space over time. The classical approach to
robotic trajectory planning involves con-
trolling the forces or torques exerted by
the joints directly [2]. Applying this tech-
nique requires the parameters and spec-
ifications of the robot to be known, as
well as low-level access to the robot’s effec-
tors. Inexpensive, commercially available
robots like the Aibo usually meet neither
of these conditions.

On the Sony Aibo robot, all control of
the joints goes through the robot’s API, which at the lowest level uses PID
control [3]. However, previous work [4] suggests that each joint (at least on the
Aibo ERS-210) can not be completely understood based on the theory of PID
control. Nevertheless, because it is only possible to issue commands to the robot’s
joints through the PID controller, this paper considers that controller as part of
the dynamical system, and therefore part of the problem. If the target is close
to the actual position, for example, it will not move at maximum speed, even if
maximum speed is required at the present part of the trajectory.

Several alternative approaches are commonly used to make a robot execute a
given movement more reliably. For example, one way to increase precision is to
slow down the movement of the robot so that the angle speeds involved are well
below the maximum angle speeds possible. Another possibility is to search for a
set of parameters used to create a sequence of angle requests, where an end goal
like overall robot speed is used as a reward function [5,6].

Ideally, we would like some kind of an equivalent of classical controllers for
motion control. As in standard control theory, there are two basic options. First,
the equivalent of an open-loop controller would be a functional Hopen that maps
a desired trajectory T through the system’s state space onto a sequence of ap-
propriate actions U for any given time: Hopen : T �→ U . This sequence can
then be used on the robot in order to achieve the desired movement. Second,
the equivalent of a feedback-controller would take as its input the present time
t, the target trajectory T , and the current observation y of the robot’s state
x. Its output would be an appropriate action u that keeps the robot’s motion
sufficiently close to the target trajectory at any time:

Hfeedack : (T, t, y) �→ u
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In the real world, defining and finding such functionals is simplified by the
fact that both time and the state space of a robot are effectively discrete, and
the dependencies between the motor commands and the robot’s trajectory are
highly local. This allows us to define Hopen in terms of a function hopen that
maps a finite neighborhood ±l of T around a time t onto a single action u at
the same time t: hopen : (T (t − l), . . . , T (t + l)) �→ u. Hopen is then defined
by computing hopen for every discrete time step of T . For example, Stronger
and Stone [4] construct such a function hopen for piecewise-linear trajectories by
first constructing an empirical joint model of a Sony Aibo ERS-210, and then
inverting that model to obtain hopen. By contrast, the approach described in
this paper uses a neural network to obtain such functions directly using data
acquired from a robot.

Finally, a wide range of previous work has also used neural networks to con-
trol robotic motion. Lewis et al. [7] show how neural networks can be used to
approximate nonlinearities in the robot’s dynamics. This method can be used for
trajectory planning, but doing so requires direct control of the robot’s motors,
which is not available on many commercial robots. On a Sony AIBO, Billard
and Ijspeert [8] use a neural network to generate qualitative variations on a type
of motion, such as different gaits for walking. Angulo et al. [9] apply neuroevo-
lution to a Central Pattern Generator (CPG) to demonstrate the emergence of
a walking behavior. To the best of the authors’ knowledge, these approaches
have not been applied to the task addressed in this paper: performing accurate
motion along an arbitrary trajectory.

3 A Neural Network-Based Approach to Motion Control

Fig. 2. The basic structure of the proposed motion con-
troller at time t. A neural network maps a neighborhood
of the target trajectory around t onto appropriate mo-
tor commands at time t. The motor commands are used
by the Aibo and result in a motion close to the target
trajectory.

The basic idea behind
our approach to robot
motion control is simple:
We use a neural network
to predict which motor
commands will cause the
robot to execute a given
movement. The robot’s
joints and their control-
lers together form the
system we are trying to
control.

Figure 2 illustrates the
structure of our approach:
A neural network maps a
finite neighborhood of the
target trajectory around the present time step onto a set of motor commands
that is supposed to keep the robot on that trajectory. Computing the output of
the neural network for each time step of a target trajectory gives a sequence of
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angle requests that can then be used by the robot to execute the desired motion.
Note that the neural network plays the role of the function hopen defined in the
previous section, implicitly defining an open-loop motion controller Hopen.

The neural network, which represents the inverse of the system in question,
can be learned directly from raw data: All that is needed is a sequence of angle
requests U and the resulting movement T . For each time t, the neighborhood
T (t−l) . . . T (t+l), together with the angle request U(t), forms a training pattern
for the network.

4 Experiments

The experiments reported in this paper were conducted using a Sony Aibo
ERS-7, a commercially available four-legged robot with 17 degrees of freedom.
All joints are equipped with PID controllers that cannot be bypassed to control
the Aibo’s movements on a lower level, and the precise specifications of both
the Aibo’s effectors and of the PID controllers are not documented. The ERS-7
has sensors on each joint that allow precise recording of the actual effects of
any motion command. The motion commands are given in the form of one an-
gle requests for each joint every 8ms. We used this maximum frequency in all
experiments.

For the reported results, we focused on the task of controlling the Aibo’s right
front leg while the robot was not touching the ground. Figure 1 shows an ERS-7
and points out the joints involved in the reported experiments.

The first set of experiments served two separate purposes. First, it aimed to
establish that the approach described in the last section leads to a significant
improvement over just using the raw trajectory as motion commands. The ex-
periment’s second purpose was to find out whether a single neural network model
of all joints involved performs better than having separate neural networks for
each joint.

The first step was to create the neural network models of the Aibo’s joints. As
mentioned before we focused on controlling the Aibo’s right front leg, which has
three degrees of freedom: The shoulder, the abductor, and the knee (see
Figure 1.) The Aibo was held in the air such that the leg never touched the ground.

4.1 Experiment I

We acquired training data for the neural networks by first creating a random
continuous sequence of angle requests, then running those requests through an
Aibo and recording the resulting movements using its sensors. Comparing the
original angle requests and the resulting target trajectory in Figure 3 should
give an impression of the kind of data used, although the data shown there
were not part of the training set. Note how the actual trajectory lags behind
the angle requests used to create it. Using about 80 seconds of training data,
we then trained two different motion controllers for the Aibo’s front leg: The
first controller was intended to model all three joints at the same time using one
neural network; the second controller used a separate network for each joint.
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The input and output of the neural networks were exactly as described in
section 3. Based on the estimated time it takes the Aibo to react to motor
commands [4], we chose ±10 time steps as the size of the neighborhood on
the target trajectory. This meant that the single-network model had 60 inputs
(three joints × 20), and three output nodes (one for each joint.) The networks
that modeled a single joint had 20 input nodes and one output node.

All networks were fully connected feedforward-networks with one hidden layer.
The size of the hidden layer was the same as the input layer. The networks

Fig. 3. Part of the test trajectory used in the first exper-
iment (dotted line). Compare the original angle requests
used to create the trajectory with the angle requests out-
put by a neural network controller.

were trained for 2000
epochs using standard
backpropagation with a
small momentum term
(0.2). The training rate
was 0.1 for the first 1000
epochs, and 0.05 for the
rest of the time. We
used SNNS (the Stuttgart
Neural Networks Simula-
tor [10]) to create and
train the networks.

We then created a fresh
sequence of random an-
gle requests, and recorded
the resulting movements of the Aibo’s leg. Using these movements as a target
trajectory, we used both neural network controllers independently to try and
replicate the target trajectory on the Aibo.

In order to establish a reasonable baseline with which to compare our results,
we also used the target trajectory as angle requests, after shifting it back by 12
time steps to allow for the lag. This is the equivalent of a controller that models
only the time lag of the Aibo’s joints. Additionally, we ran the original sequence
of angle requests through the Aibo again, to find a practical upper performance
limit due to motor and sensor precision.

Figure 3 shows part of the target trajectory for the Aibo’s abductor joint,
together with the original angle requests used to create it, and the angle requests
that the single-network model thinks will reproduce the target trajectory. It
seems like the requests created by the neural network stay reasonably close to
the original.

Figure 4 compares the trajectories controlled by the two neural network con-
trollers to the baseline trajectory. Both neural network controllers perform visi-
bly better than the baseline, especially at sharp turns in the trajectory. Figure 5
compares the two neural network controllers. The height of each bar is the aver-
age Euclidean distance of the Aibo’s foot from the target trajectory. The leftmost
bar is the upper performance limit established by using the original set of an-
gle requests again, and comparing the result to the target trajectory. The two
bars in the center belong to the two neural network controllers. The bar on the
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right is the baseline error. The error bars denote the 95% confidence intervals for
the distance averaged over 12 seconds. All differences are statistically significant
(p < .05).

time/s

Fig. 4. Comparing trajectories controlled by neural net-
works with the baseline trajectory. Both neural network
controllers perform visibly better than the baseline.

Figure 5 confirms
the earlier impression
that both neural net-
work controllers per-
form well above the
baseline. In fact, they
both reduce the aver-
age error by more than
half. Also, for the single
network controller, the
average distance from
the target trajectory is
less than twice the upper performance limit defined by the Aibo’s motor and
sensor precision. Overall, our first experiment showed that both neural network
controllers perform significantly above the baseline level, and the single network-
controller is able to exploit the additional information it receives to outperform
the controller using separate networks.

4.2 Experiment II

Fig. 5. The average Eu-
clidean distance from the
target trajectory (in cm)
achieved by theneural net-
work controllers are shown
in the middle two bars

The second experiment also had two objectives.
The first was to find out if the open-loop ar-
chitecture chosen for the present implementation
is able to handle trajectories outside the physical
limits of the robot. Such trajectories are usually cre-
ated to fool the built-in controllers into moving the
joints faster than they would ordinarily, and would
therefore be unnecessary given a working motion con-
troller. However, it would still be useful to have a
motion controller that, given a trajectory outside the
physical constraints of the Aibo, creates the closest
possible trajectory within the constraints.

The second objective was originally to make a quan-
titative comparison between our model and the ana-
lytical model used by Stronger and Stone for the same task [4]. Since the results
reported there were obtained using an earlier model of the Aibo, we attempted
to implement the model on the new Aibo in order to make a quantitative com-
parison possible. However, early experiments revealed that the joint dynamics
of the Aibo ERS-7 are sufficiently different from the earlier model as to make a
direct implementation impossible. When the requested trajectory for a leg joint
was set to a step function, the different joints exhibited qualitatively different
and surprisingly erratic behaviors. The angle speeds changed unpredictably over
time, and the joints’ behavior did not appear to fall within the parameters of
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Stronger and Stone’s model. We believe that this in itself is a strong argument
for an adaptive and more flexible approach to joint modeling.

Fig. 6. The test trajectory used for the second experi-
ment, in Cartesian coordinates (left), and in the Aibo’s
joint angle coordinates (right). The dotted lines are an-
gle requests created by a neural network controller for
this trajectory.

Figure 6 shows the tar-
get trajectory used in this
experiment. It is a half-
ellipse with a period 65
timesteps, and could be
realistically used for a fast
walk on the Aibo ERS-7.

We used the single-
network controller trained
in the last experiment
to try and reproduce the
target trajectory on the
Aibo. Figure 7 shows the
resulting angle trajecto-
ries for the three joints involved. Like in the last experiment, the baseline curve
was obtained using a controller that only compensates for the time lag between
an angle request and the resulting motion. The trajectories of the shoulder and
especially the abductor clearly show improvement over the baseline curve, while
the trajectory for the knee is more or less the same as the baseline.

It would be reasonable to expect a corresponding improvement of the trajec-
tory of the Aibo’s foot in Euclidean space. However, no such improvement was
observed. The average distance of the Aibo’s foot from the target trajectory is
about 8.5mm both for the baseline trajectory and for the one controlled by the
neural network. This discrepancy can be understood as follows. When the neural
network achieves an improvement over the baseline, the large knee angles moved
the Aibo’s foot close to the rotational axis of the abductor joint, which made
the improvement in the abductor angle irrelevant in Euclidean space.

Notably, the neural network-based controller degraded gracefully when pre-
sented with a physically impossible trajectory, since the controller used to create
the baseline curve still performs much better than using the raw target trajectory
as angle requests.
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Fig. 7. The resulting angle trajectories for the shoulder, abductor, and knee joint. The
shoulder and especially the abductor show improvement over the baseline trajectory.



A Neural Network-Based Approach to Robot Motion Control 487

5 Conclusion

This paper introduced a neural network-based approach to robot motion control.
Using data recorded on a physical robot, we trained neural networks to predict
which angle commands are necessary to make a robot execute a given movement.
The built-in controllers for the robot’s joints were treated as part of the system
to be modeled and controlled.

We conducted two experiments, using a popular commercially available robot,
the Sony Aibo ERS-7, as our experimental platform. The first experiment showed
that the proposed approach is indeed able to bring a robot’s motions significantly
closer to the desired trajectory. In the second experiment, the neural network-
controller failed to produce equally good results, but was nevertheless shown to
degrade gracefully when presented with a target trajectory outside the robot’s
physical constraints.
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Abstract. In this paper, we propose a new technique to compute, in real
time, the positions of robots in a cooperative play such as the pass-and-
shoot play. To evaluate the positioning of the robot, we use the Dominant
Region (DR) diagram, which is a kind of a Voronoi diagram. In the DR
diagram, the soccer field is divided into regions, each of which shows an
area that a robot can reach faster than the other robots. This division is
based on the time of arrival while the division by the Voronoi diagram
is based on the distance of arrival. Though the DR diagram plays a
primary role in the positioning of the robots, it has a serious problem
of taking much computation time. To overcome this problem, we show
an approximate calculation procedure to obtain the DR diagram, which
realizes the real time computation, i.e. a computation within a frame
time. Applying the approximate dominant diagram to the positioning of
the robots for the pass play, we show, by the simulation study,

– the DR diagram can be calculated in real time,
– an appropriate position for the pass play can be obtained.

1 Introduction

The skills in robotic soccer are growing higher and higher by the year. In recent
years, especially in Small Size League, the technique for achieving highly coop-
erative plays among robots are discussed[1,2]. In a cooperative play such as a
pass play, the robot receiving the ball must get to where the pass comes through
faster than any other robot. A systematic way to find such point is considering
the robot’s dominant region, i.e. the set of all points the robot can reach first or
the territory of the robot.

Under the idealized assumption of infinite acceleration the time to reach a
point is proportional to the distance to that point. In this case the Voronoi
diagram [3] provides the dominant region, and the positioning of robots based
on the Voronoi diagram is discussed in [4]. In the limited acceleration case, we
must compute the arrival time of each robot for each point and select the fastest
one[5]. In [5], the resulting figure is called the dominant region (DR) diagram.
The computational problem of the DR diagram is to take much computation
time. Consequently, real time computation of the DR diagram is required.
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In this paper, we address the more realistic and much more challenging case
of omnidirectional motion with limited velocity and acceleration. We propose an
approximation algorithm that compute the dominant region diagram in submil-
lisecond enabling real time operation. Simulation study shows that the position-
ing based on the approximate DR diagram works well to carry out a successful
cooperative play.

2 Making an Approximate Dominant Region Diagram

Though the DR diagram gives the accurate territory of each robot, it takes much
computation time. To employ the DR diagram in the real game of RoboCup,
real time computation of the DR diagram is necessary. One of the solutions is
to make an approximate DR diagram.

2.1 Calculation of an Approximate DR Diagram

To reduce the computation time, we calculate the arrival time for each of the
selected points on the field. For each point other than the selected ones, we get
the arrival time by interpolation. Using these arrival times, we can make the
approximate DR diagram as follows1.

Algorithm 1. Computing the approximate DR diagram
Let the maximal acceleration, the current velocity and the current position of

the robot be a, v and Px, respectively. (Each is a vector.) Since the robot
can move in any direction, we consider the n acceleration vectors as shown
in figure 1(a) to compute the possible future position. Let them be a1 ... an.
Assume that the field is divided into the grids.

Step 1. For each robot, compute the position of the robot for every Δt seconds
from 0 to tmax according to the following equation

xk =
1
2
akt2 + vt + Px, k = 1, ...n, (1)

where, t = l · Δt, l = 0, 1, ..., tmax/Δt.
Step 2. For the points calculated in Step 1, make a triangulation as shown in

figure 1(b). The arrival time of any grid point of the field in a triangle is
calculated by the interpolation from the arrival times of its vertex points.
(The triangulation will be done for each robot.)

Step 3. For each grid point, find the robot that has the minimal arrival time
and put the grid point to be a territory of the robot.

We compare the difference between the Voronoi diagram and the approximate
DR diagram by examples. Figure 2 (a) shows a polygon divided by the distance
from a robot put at the right half of the field and figure 2 (b) shows a polygon
1 The approximate DR diagram is discussed in [5], however the detailed algorithm is

not shown there.
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(a)Acceleration vectors (b)Arrival time computation
(Δt = 0.2, Number of acc. vectors = 8,

|a| = 2m/sec2, |v| = 1.35m/sec,
Velocity vector direction: right

horizontal way.)

Fig. 1. Computation of approximated DR diagram

(a) Division by distance (one robot) (b) Division by arrival-time(one robot)

(c) Voronoi diagram(ten robots) (d) DR diagram(ten robots)

Fig. 2. Comparison between Voronoi diagram and DR diagram

divided by the arrival time of a robot put at the same point as in Fig. 2 (a).
Each polygon is shaded from light gray to deep gray according to the distance
or the arrival time from near to far. We call the polygon in Fig. 2 (b) the
dominant polygon. The dominant polygon is obtained by computing Step 1 of
Algorithm 1. Figure 2 (c) and (d) are the examples of the Voronoi diagram and
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the approximate DR diagram when ten robots exist. The number in each region
corresponds to the robot that dominates the region. Throughout this paper, the
robots from 0 to 4 are opponents and the ones from 5 to 9 are teammates. The
thin segment beginning from each robot shows a velocity vector. So is the ball.
The end point of the thick segment beginning from the ball in Fig. 2 (d) is a
point that robot 8 meets the ball since the DR diagram shows the arrival time.

3 Real Time Calculation of an Approximate DR Diagram

If we can calculate the DR diagram in real time, it will be a very useful tool for
planning the robot action. In this section, we discuss the real time calculation
of the approximate DR diagram.

According to the algorithm shown in the previous section, we can compute
the approximate DR diagram. We show some computing results. Figure 3 shows
the examples of the approximate DR diagram. We computed them under the
environment of Debian Linux operating system and the Athlon 64 3500+ CPU
with 512 MB main memory. The parameters in Fig. 3(a) are 32-way acceleration
vectors, Δt = 0.1 seconds, time range from 0 to 1.5 seconds, and the 490 by 340
grid points. We get a fine diagram, however, it takes 143 seconds to compute.
The parameters in Fig. 3(b) are 6-way acceleration vectors, Δt = 0.2 seconds,
time range of 0 to 1 second, and the 98 by 64 grid points. We get a rough diagram
but taking only 0.512 seconds. Unfortunately, even the latter case doesn’t satisfy
the computation within the frame time. Further reduction of the computation
time is required, however, making the parameters rougher is not acceptable.

(a) Detailed calculation (b) Rough calculation

Fig. 3. Two examples of DR diagram

In the soccer system, it is sufficient to know which robot will be able to get
to the ball first. Therefore, one solution for the real time computation is an
incremental computation of the DR diagram. In other words, we compute the
partial DR diagram around the ball in the time range from 0 to t, and the
ball locus. If the ball is in a dominant region of some robot, the computation
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finishes, otherwise the computation continues with increasing the time by Δt.
An algorithm is shown below2.

Algorithm 2. Incremental computation of the partial DR diagram
Assume that tmin, tmax and Δt are given constants.

Step 1. Set t ← tmin.
Step 2. Following to Step 1 of Algorithm 1, compute the position of each robot

and make a dominant polygon. Also compute the ball position at time t.
Step 3. If the ball is in the dominant polygon of one robot, then the robot

gets to the ball first. Otherwise, if it is in the dominant polygons of some
robots, then compute the dominant polygon that has the minimal arrival
time according to Step 2 of Algorithm 1. The robot corresponding to the
dominant polygon gets to the ball first. Otherwise, go to the next step.

Step 4. t ← t + Δt. If t > tmax, then no robot can get to the ball within tmax,
otherwise, go to Step 2.

In Step 2 in the algorithm above, the computed partial DR diagram should
be memorized to avoid the superfluous computation in the next iteration.

We measured the computation time of Algorithm 2 under the following con-
ditions.

1. tmin = 0, tmax = 1.5, Δt = 0.1 (Unit: second).
2. |a| = 2m/sec2, |v|: any value, a number of acceleration vectors = 8, grid

points = 490 × 340.
3. The number of the robot is ten.

Table 1 shows the average computation time. It only takes submilliseconds. In
the real games, since almost all the robots can get to the ball within 1 second, this
result shows that it is sufficient to use Algorithm 2 for the real time computation
of the partial DR diagram.

Table 1. Average computation time of Algorithm 2

Maximal time tmax (sec) 0.1 0.2 0.5 0.7 1.4 unlimited
Computation time (msec) 0.068 0.107 0.218 0.296 0.560 0.584

4 Some Positioning Algorithm Based on Partial DR
Diagram

In this section, we show a positioning algorithm using the partial DR diagram.
We consider the situation where teammate robot A would like to pass the ball
to teammate robot B, however Robot B is being marked by an opponent, robot

2 In case where the robot is moving, it is quite hard work to compute when the robot
arrives at the ball under the omni-directional movement conditions.
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(a) Computation in Algorithm 3 (b) Computation in real game

Fig. 4. Candidate direction vectors to flee from marking of the opponent robot

X. Robot B should flee from the marking of robot X. Where should the robot
go? The next algorithm gives the destination of robot B.

The basic idea is the following: if robot B is in the dominant polygon of robot
X, select a direction which makes the distance between robot B and the boundary
of the polygon shorter and the distance between robot B and the boundary of
the field longer. The algorithm is given below.

Algorithm 3. Getting the destination to flee from the marking of the opponent
robot

Let TargetPos and CurrentPos be the destination and the current position of
robot B, respectively.

Step 1. For given time t, compute the dominant polygons of the opponent
robots. If robot B is in the dominant polygons of some of them, let the
robot that has minimal arrival time be robot X, i.e. robot X is the one that
marks robot B. (Robot X is 0 and robot B is 5 in figure 4(a).) If there is no
robot marking robot B, CurrentPos is a destination, i.e. TargetPos.

Step 2. Compute the vector C(θ) from robot B to each vertex of the dominant
polygon of robot X. (The dark thin segments in Fig. 4(a).)

Step 3. Extend each vector toward the boundary of the field. (The light thin
segments in Fig. 4(a).) Let it be E(θ).

Step 4. Compute the following equation.

θmax = arg max
θ

(|E(θ)|/|C(θ)|)

and
TargetPos = CurrentPos +

1
2
(E(θmax) + C(θmax))

E(θmax) is shown in Fig. 4(a) as a thick segment, and the TargetPos is a
destination.

To make the TargetPos stable, this computation is done once every N frame
times, where N is decided by the experiment. (To get an optimal N is a future
problem).
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(a)Frame 0 (b)Frame 29 (c)Frame 36

(d)Frame 51 (e)Frame 63 (f)Frame 72

Fig. 5. An example of simulated game

In the real game, we compute the extended vectors within an area of attention.
Figure 4(b) shows an example. In the figure, the extended vectors are only
calculated within the right-upward area of the field, since the teammate robot
would receive the ball at a position far from the ball and shoot it towards the
goal.

We show an actual application example of Algorithm 3 in the game. Figure 5
shows the six time slices of a simulated game. Frame numbers are shown in the
captions below figures. Each figure has the dominant polygon except the frame
36. This means that robot 5 is marked by opponent robot 0, and in the frame
36, there is no marking robot. A series of figures show the process of passing
from robot 6 to robot 5 and then shooting of robot 5 to the goal by the direct
play which we proposed in [2].

In figure 5(a), robot 5 was moving toward the left direction to escape from
robot 0. (Black segment in front of each robot shows the velocity vector.) Robot
0 is faster than robot 5. Run-away direction computation gets robot 5 to move in
the thick segment direction. In other words, it shows that robot 5 can run away
from the marking of robot 0 in less time. Figure 5(b) shows the state just before
robot 6 kicks the ball. In this time slice, the robots 5 and 0 are moving toward
the down-right direction, since the run-away direction computed in Frame 0 is
available. It is shown that the velocity of robot 5 is larger than robot 0, since
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robot 0 has moved toward upper-left direction in Frame 0. Figure 5(c) shows the
state just after robot 6 kicked the ball and figure 5(d) shows the state the ball
is moving halfway. Since the speed of robot 5 is faster than robot 0, robot 5 can
get to the ball first. Figure 5(e) shows the state just after robot 5 gets to the
ball and figure 5(f) shows the state the ball is kicked by direct play.

5 Concluding Remarks

In this paper, we proposed an algorithm that computes the partial dominant
region diagram in real time and an algorithm that finds a run-away position of a
teammate robot that is marked by an opponent robot. The latter algorithm effi-
ciently uses the partial DR diagram to find the run-away destination. Simulation
studies shows that the algorithm works well.

As further study, the need of improvement in the algorithm such as

– the optimization of the parameters in Algorithm 2,
– how to decide the stabilizer parameter N in Algorithm 3,

remain. The position evaluation methodology is an important issue that should
be discussed in this field.

References

1. Murakami, K., Hibino, S., Kodama, Y., Iida, T., Kato, K., Naruse, T.: Cooperative
Soccer Play by Real Small-Size Robot. In: Polani, D., Browning, B., Bonarini, A.,
Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI), vol. 3020, pp. 410–421. Springer,
Heidelberg (2004)

2. Nakanishi, R., Bruce, J., Murakami, K., Naruse, T., Veloso, M.: Cooperative 3-robot
passing and shooting in the RoboCup Small Size League. In: RoboCup international
symposium 2006, CDROM (June 2006)

3. Preparata, F.P., Shamos, M.I.: Computational Geometry, An Introduction. Springer
(1985)

4. Dashti, H.T., et al.: Dynamic Positioning based on Voronoi Cells. In: Bredenfeld, A.,
Jacoff, A., Noda, I., Takahashi, Y. (eds.) RoboCup 2005. LNCS (LNAI), vol. 4020,
pp. 219–229. Springer, Heidelberg (2006)

5. Taki, T., Hasegawa, J.: Dominant Region: A Basic Feature for Group Motion Anal-
ysis and Its Application to Teamwork Evaluation in Soccer Games. In: RSFDGrC
2005, vol. 3641, pp. 48–57 (January 1999)



Introducing Physical Visualization Sub-league

Rodrigo da Silva Guerra1, Joschka Boedecker1, Norbert Mayer1,2,
Shinzo Yanagimachi3, Yasuji Hirosawa3, Kazuhiko Yoshikawa3,

Masaaki Namekawa3, and Minoru Asada1,2

1 Dept. of Adaptive Machine Systems,
2 HANDAI Frontier Research Center,

Graduate School of Engineering, Osaka University, Osaka, Japan
3 CITIZEN Co., Tokyo, Japan

{rodrigo.guerra,joschka.boedecker,norbert,asada}@ams.eng.osaka-u.ac.jp,
{yanagimachi,hirosawa,yoshikawaka,namekawam}@citizen.co.jp

Abstract. This work introduces the new sub-league of the RoboCup
Soccer Simulation League, called Physical Visualization. We show how
the fundamental collaborative concepts of this new sub-league shift es-
sential research issues from the playing agents themselves to the develop-
ment of a new versatile research and educational platform. Additionally,
we discuss benefits of this new platform in terms of standardization, flex-
ibility and reasonable price. We also try to characterize and discuss the
place of this new sub-league within the RoboCup community. Finally,
competition formats and roadmaps are presented and discussed.

1 Introduction

Physical Visualization (PV for short) is candidate to be a new RoboCup Soc-
cer Simulation sub-league. The sub-league is intended for fostering education,
research and development together with the RoboCup community. The PV is
based on a miniature multi-robot system which mixes reality and simulation
through an Augmented Reality (AR) environment. The project has a two-folded
focus: research and education. The main goals of the PV are:

– to gradually improve the platform so that it becomes a powerful and versatile
standard for multi-agent research and education.

– to explore educational possibilities and real world applications based either
on the system as a whole or on some parts of it (e.g. the robots alone).

We focused on versatility and affordability, taking advantage of well estab-
lished industry technologies to allow the development of an inexpensive plat-
form. In order to do that we used the know-how of the cutting-edge and low cost
watch technology as a basis for building an affordable miniature multi-robot sys-
tem mixing reality and simulation. Three dominant characteristics of the project
are: (a) affordability, (b) standardization and (c) open architecture.

The rest of this paper is organized as follows: Section 2 gives more detailed
technical information on the current implementation of the system, section 3
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introduces the sub-league’s collaborative nature and discuss three different com-
petitions using the system, and finally, section 4 discusses, from a wider perspec-
tive the place of this sub-league within RoboCup and gives some final remarks
from the authors.

2 Technical Aspects

Robots obey commands sent by a central server through an IR beam, while their
actual position and orientation is fedback to the server by a camera located on
the top. Meanwhile a number of visual features are projected onto the field by
using a flat display. This system merges characteristics and concepts from two
of the most mature RoboCup leagues, Simulation and Small-Size [4], and adds
a new key-feature: augmented reality.

All the robots are centrally controlled from one CPU but their decision making
algorithms run on networked clients, making the robots behave autonomously
virtually isolated from each other just like in simulation league. Position feedback
is based on colored markers placed on top of the robots which are detected
through a vision system in the same way used in small-size league. Robot control
is based on strings of commands sent by modulated infrared signals (in this sense
resembling U-league to some extent [1]).

2.1 The Position Feedback

The position of the robots (and eventually other objects, such as ball) is de-
tected from the processing of high-resolution camera images. The computer vi-
sion system currently implemented can be divided into three main subsystems:
(a) undistortion, (b) blob detection, and (c) identification & orientation. Each
one is described in the following paragraphs.

Undistortion: Despite the fact of the PV robots being real three-dimensional
objects occupying volume in space, the domain of possible locations for their
bodies over the plane of the flat screen is known to be confined into a two-
dimensional space. Because of that the calibration problem can be reduced,
without loss of generality, to a plane-to-plane linear transformation from the
plane of the captured image to the plane of field itself. This transformation is
a single linear 3 × 3 matrix operator which defines a homography in the two-
dimensional projective space (see figure 1).

Blob detection: After undistorted, the image is segmented into blobs of certain
colors of interest. These colors are defined by a mask in the three-dimensional
Y × U × V space. Adjacent pixels, in a 8-neighborhood, belonging to the same
color mask configure a single blob. The area (total amount of pixels) and center
of mass (average (x, y) coordinates) of the blobs are extracted. Blobs whose mass
values are not within a tolerance range from the expected are discarded. This
procedure is used for finding the center of the colored marking patterns on the
top of each robot – the red shape seen on figure 2-b.
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Fig. 1. Plane-to-plane projective undistortion based on homography transformation,
where H is a 3×3 matrix operator and p and po are 3-dimensional vectors representing
points in the two-dimensional projective space

Identification and orientation: The process here described is inspired on [5].
Once a potential blob is found, a radial pattern of colors is sampled within a pre-
defined radius of its center. In figure 2-b these sampling locations are artificially
illustrated by a closed path of little green dots. This pattern is cross correlated
with a database of stored patterns, each of which uniquely defining a robot’s
identity. Let’s denote x(i) to be the color in the pattern x at the angle i. The
cross-correlation rxy is calculated accordingly to the equation 1 for each pattern
y the database, and for each Δα in the interval [0o, 360o). If, for a pattern x, the
minimum value of rxy(Δα), for any y and Δα ∈ [0o, 360o), exceeds a minimum
threshold, then the corresponding y gives the identity of a robot, and Δα gives
its orientation.

rxy(Δα) =
∑360o

i=0o [(x(i) − x̄) · (y(i − Δα) − ȳ)]√∑360o

i=0o(x(i) − x̄)2 ·
√∑360o

i=0o(y(i − Δα) − ȳ)2
(1)

2.2 Augmented Reality

The idea about the augmented reality setup is an extension of a previously
published similar concept where robot ants would leave visually coloured trails of
“pheromones” by the use of a multimedia projector on the ceiling of a dark room
in a swarm intelligence study [6]. Huge improvements in versatility, flexibility,
and standardization can be introduced by applying that concept into a more
customizable system. The figure 2-a shows an illustrative drawing and figure 2-b
shows an actual picture of our system in action. Given the reduced size and
weight of the PV sub-league robots the application of a conventional flat display
as the field becomes feasible – depending on the application, displays as small
as 20-inches are more than enough. This adds much versatility to the system
without adding much costs and without complicating the required setup.
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(a) (b)

Fig. 2. On the left an illustration of the overall system including the feedback control
loop (infrared transmitter, camera, server) and the augmented reality screen. On the
right an actual close-up picture of two robots playing using such setup.

2.3 The Miniature Robot

Until now, a few developments have been made on very small sized robots, being
ALICE one of the most prominent names (see [2] for a survey). The first versions
of the miniature robot here used were originaly developed by CITIZEN as mer-
chandize devices for demonstrating their new solar powered watch technologies
[7]. Since March of 2006 three new prototype versions were already developed
for matching the requirements of the sub-league. The most current version of the
robot has dimensions of 18 × 18 × 22mm, no sensors, an infrared receiver and
is driven by two differential wheels. This first robot was purposely designed to
have rather simplistic hardware configuration as a starting point, a seed, to be
followed by numerous upgrades in the long term. The main robot components
are (numbers in accordance to figure 3-b):

1. Motor – Customized from wristwatch motor unit. See further details in the
dedicated sub-section 2.4.

2. Battery – Miniature one-cell rechargeable 3.7V lithium ion polymer battery
with capacity of 65mAh.

3. Control board – Currently based on the Microchip 8bit PIC18 family of
microcontrollers, each robot comes equipped with a PIC18LF1220 which
features 4kb of re-programmable flash memory.

4. IR sensor – An IR sensor is used in order to listen for commands from the
PC. The sensor operates at the 40kHz bandwidth modulation (same of most
home-appliance remote controls).

5. Body – The resistant durable body of the robot is micro-machined in alu-
minum using CITIZEN’s high precision CNC machines.

2.4 The Micro Step Motor

Simply of-the-shelf wristwatch motors would not be able to bear with the torque
requirements for moving the heavy body of the robot. For couping with that
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(a) (b)

Fig. 3. On the left a close-up picture of the step motor, on the right an exploded view
of revealing the robot parts

Table 1. Technical specifications of the step motors used in the miniature robots

Feature Value

Dimensions (mm) 7.0 × 8.5 × 1.9
Configuration 2 coils × 1 rotor
Gear ratio 1 : 240
Torque (gf · cm at 2.8V ) between 2.0 and 4.0
Power consumption at 200rps (mA) between 4 and 12
Nominal rotation (rpm) 12.000
Direction both standard and reverse

CITIZEN developed a new special class of step motors combining high-speed
rotation and nano-scaled geared reduction.

2.5 Robot’s Firmware and Control Protocol

The current control protocol was programmed in C and compiled using the pro-
prietary MPLAB C18 compiler. All robots share the same firmware but dynamic
IDs are be assigned so that commands to an individual robot can be discrimi-
nated. Each of the two wheels can be controlled to run at two different speeds,
in both directions or stopped (total of 5 possible values). Commands have to be
sent by the server to one robot at a time, in an ordered fashion. This implies
that bigger number of robots result in longer control lags. Therefore the protocol
format was designed so that the command could be sent in a very short time.
The current command protocol has a length of 12bits: ID (5bits), left command
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(3bits), right command (3bits), and bit parity check (1bit). Less frequently used
instructions are multiplexed from a sequence of two or more commands.

3 Competitions with Cooperation

The original and dominant point of the proposed sub-league is its concept of
collaboration towards the development of a central platform for the benefit of
all. While in other leagues essential research issues are traditionally faced in
the playing agents themselves (AI, biped walking, vision, etc.), in the PV the
research issues are in the improvement of the system – in the development of
the platform and its robots.

3.1 Electronics and Firmware Competition

Goal: Allow the evolution of the robot’s technology and improve all non-software
related aspects of the system.

Summary: Teams have the opportunity to contribute with new ideas for the elec-
tronic aspects of the system as well as robot’s firmware. Those with background
in fields more closely related to the hardware would be able to include in their
projects the improvement of certain aspects of the system either for didactic
purposes (e.g. class on microcontrollers) or for research. Meanwhile, teams with
background in fields more related to computer science would be able to acquire
valuable experience by accompanying or even contributing to these projects.

New electronic entries developments could be made on any of the current
components of the system, including the robot, or by introducing a new electronic
element to the system. All source code, CAD drawings, circuit schematics and
documentation should be made available to other teams so that they can use
and improve at their own.

In the control circuit of the robot several restrictions will be imposed regarding
position of mounting holes, size and shape of the board, max bounding volume,
limit weight and place of certain components would be applied in order to en-
sure compatibility with current micro-mechatronic architecture. For instance,
connections to the motors would have pre-defined place and electrical character-
istics that should remain unchanged. Within those constraints completely new
architectures can be proposed.

Entries would be ranked according to a qualified review process preceding
RoboCup and based on slide presentations realized during the event. The con-
tributions from the winner of this competition would not necessarily become the
new standard for the following years. Nevertheless, contributions published from
winner and non-winner teams might be considered for incorporation depending
of various criteria to be evaluated (e.g. practicability, price).

3.2 Educational AI Games Competition

Goal: Create a pool of interesting didactic software applications in the form of
games using the system for educational purposes.
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Summary: Entrants would come up with different game ideas using the system
in which they teach concepts related to common subjects ranging from basic
computer programming to very specialized topics related to multi-agent systems
and artificial intelligence.

The entries would consist of the proposed games along with their source code,
supporting tools or API (if any), documentation and accompanying teaching
materials. In order to ensure that other teams could easily profit from these con-
tributions the entries would need to be necessarily based on the current official
system only. While the eventual introduction of accessories such as balls maze
walls or colored objects would, in general, be permitted, no external specialized
electronic devices would be allowed. Live demonstrations and poster presenta-
tions would be performed during the RoboCup event, and together with prior
qualified reviewing would rank the entrant.

Again, just like in the competition described in sub-section 3.1, winner appli-
cations would not necessarily be incorporated as league games for the following
years. On the other hand, contributions could be considered for incorporation
regardless of the competition results, depending on their quality, topics covered
and other criteria.

3.3 Rapid (Soccer) Team Development Competition

Goal: Allow undergraduate students to develop complete RoboCup teams of
their own within the typically limited time window of their courses.

Summary: The teams would be based on a simplified didactic game framework
allowing easy development requiring only a very limited amount of knowledge.
All contestants would have an equally limited amount of time for the develop-
ment of their teams, thus giving similar advantages to teams with limited time
to spare. Game rules and supporting software would be officially released just a
predefined amount of months before the RoboCup games.

This comes to fill the gap between RoboCup Junior and the other RoboCup
Senior leagues. Refer to [1,3] for a previous attempt to include more under-
graduate students, where a new league directed exclusively towards them was
proposed (the U-league).

In the Rapid Soccer Competition institutions and laboratories equipped with
the PV system would be able to let their alumni experiment their ideas into
a RoboCup environment regardless of their time constraints (i.e. having more
time to spare would post no advantage). Ideas previously introduced in the
Educational AI Games competition could be entirely or partially incorporated
into the system. Competitions would take the form of a tournament which would
spam over the duration of the RoboCup event. At the end tutors would be invited
to share the experiences they had when using the system within their courses
and discuss improvements for the subsequent years.
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4 Discussion

This paper introduced the main technical and conceptual characteristics of the
PV sub-league. In particular, it was emphasized in the beginning of section 3,
that the central innovative aspect of the proposed idea was the shift of focus
from the playing agents to the shared system. Furthermore, the three proposed
competitions showed in a more clear way how this collaboration shall be fos-
tered toward the constant development of a versatile system for education and
research.
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Abstract. This paper propose a real-time vision framework for mobile robotics
and describes the current implementation. The pipeline structure further reduces
latency and allows a paralleled hardware implementation. A dedicated hardware
vision sensor was developed in order to take advantage of the proposed architec-
ture. The real-time characteristics and hardware partial implementation, coupled
with low energy consumption address typical autonomous systems applications.
A characterization of the implemented system in the Robocup scenario, during
competition matches, is presented.

1 Introduction

Artificial vision systems are primordial elements in robotics navigation, localization
and perception. This is due, to the their great sensing capabilities and low cost. Further-
more embedded solutions with hardware parallel implementation are starting to surface
allowing to solve one of the key problems in artificial vision, the high computational
resources required.

Considering robotic vision to be a real-time problem, there are certain amount of
functionalities, that the vision system must possess in order to face the highly dynamic
environmental changes and be able to track external moving objects. Namely, all robotic
vision frameworks have to deal with real time aspects and restrictions imposed on the
robot modules. System designers must balance between using time and computational
consuming methods, against more simple methods that allow low energy consumption
and still have a good degree of robustness. Finally all environmental properties must
be perceived, in order to control the vision system and allow the autonomous system to
work.

As a consequence several vision software tend to be application oriented. In order
to prevent this, a conceptual architecture is required. Most state-of-art frameworks for
real time applications are mainly concern with the image processing modules[1][2].
There are other applications like active vision systems mounted in pan-tilt heads [3][4]
or real-time human tracking methods for autonomous mobile robots[5]. Therefore, an
overall real-time framework was developed to cope not only with the need to solve the
image processing modules problems, but also through the use of a paralleled hardware

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 504–511, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



A Real Time Vision System for Autonomous Systems 505

implementation[6] to be able to handle problems regarding image acquisition, power
consumption and latency between frames.

One of the advantages of an modular framework, is that the different modules can be
replaced or adapted to different applications and to different environmental conditions
(indoor or outdoor, structured or not).

The modules are integrated in a pipeline structure architecture having two streams of
data. One, the main data which concerns only the main modules, and the control data
which connects the main modules with the auxiliary ones and provides the system with
other type of self-adjusting and logging capabilities.

The framework here described was developed using the Robocup Middle Size League
team ISePorto has a benchmark scenario, and has already been integrated in multiples
autonomous vehicles [7][8] in different applications scenarios operating both indoors
and outdoors.

Fig. 1. ISePorto Robot

This paper is structured in the following way. In the ensuing section, we present the
overall architecture of the system followed by a shortened explanation of the architec-
ture modules, there inputs and outputs. In section 3 the hardware embedded solution is
presented and its modules detailed, followed by results of temporal analysis and quality
of measures obtained. These results where obtained using the framework in a Robocup
scenario, some during a real Robocup match. Finally in section 5 a conclusion regarding
the overall system functionalities and future research will be presented.

2 Vision System Architecture

The proposed architecture, see Figure 2, follows an image processing pipeline approach.
Where some of the layers can be hardware or software implemented. The pipeline starts
with the acquisition layer (three left blocks) that takes care of all hardware related and
image acquisition configurations, camera settings and so on.

The system is programmed to acquire frames from different types of devices (em-
bedded, USB). It detects which type of camera is plugged in, and automatically starts to
acquire frames using that device. This layer also contains the color interpolation mod-
ule, whose function is to assigned color information to image pixels. The system can
also integrate, logarithmic scales, IR and monochromatic image types.
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Fig. 2. Vision System Architecture

The image processing layer is responsible for the refinement and abstraction of the
image data. After all image pixels have been given texture info, they will be segmented
using the selected method. Currently, they are segmented into previously defined color
clusters following a method proposed by[9]. Any other type of segmentation method,
based on regions, histograms, clusters, neural networks, etc, can be used due to system
modularity, by changing the segmentation module. We can for example use an hybrid
approach like[10], that combines image segmentation with extraction of edge topologi-
cal information. Afterwards, the pixels with color information will be compressed using
run length encoding (RLE).

This compression method is used due to is effectiveness in conserving the infor-
mation and reducing data size. Afterwards a run is conducted to look for previously
sanctioned color transitions. When one of this transitions occurs, a color transition is
created and stored. It will have similar information as a normal RLE: image position,
color and number of pixels, but also deals with color transactions uncertainty. These
may occur due to interpolation issues, occlusion or illumination problem.

One of the key points of the method is that the number of RLE transitions are not
directly attached to the number of image pixels, but are attached to the number of image
RLE. In our system is about 1/8 of the total computational cost of the RLE module and
only stores 1/15 of the RLE data. After all types of RLE have been processed, the con-
nected RLE will be grouped into similar color regions (BLOBS). Once all the RLE are
grouped into BLOBS further processing is done in the top architecture layer, the high
level data layer (Object Recognition block). The high level data layer is constituted by
the modules that detect features for the robot localization and navigation sub-systems,
thus closely related with the application. Lower level layers are relatively application
independent and can be used in multiple autonomous scenarios. Image information
at this stage already contains edge and blob identification, allowing particular object
search. Besides the data processing modules, the system also has some auto-calibrations
tools, that are used to help the vision system dealing with environmental changes. In
our system a white balance calibration is done to allow perception of the illumination
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changes, some of the segmentation and color interpolation parameters are sent to a cal-
ibration module, that detects color clusters shifting. Statistical analysis on mean value
for color pixels provides information for controlling camera parameters.

The architecture high level modules are being continually improved. Currently high
level stereo is under development, this module will not work at pixel level but will
merge high level objects information provided by the acquisition devices, leading to a
change in some of the higher architecture modules. This method is less time consuming
than merging camera information at pixel level.

3 Hardware Vision Sensor

The hardware embedded sensors are an emergent solution in robotics and autonomous
systems applications. This is due to their hardware reconfiguration capabilities, low cost
implementation, low energy consumption and low hardware concentration.

The vision systems built with reconfigurable and embedded hardware have some
advantages over a standard vision system namely: cost, size, energy, computational
resources and latency. It also possess some disadvantages like: processing capabilities,
development cost and fixed point arithmetic.

These devices are a solution when dealing with hardware costs issues, several solu-
tions exists using CCD and CMOS technologies. This one has the advantage of allow-
ing more sensors addiction and with the use of field programmable gate arrays (FPGA)
achieve low level processing with a low energy cost, taking advantages of the inner
parallel processing architecture of this devices.

Fig. 3. Hardware Image Sensor Architecture

So taking this issues in consideration, the embedded vision sensor BOAVISTA was
developed to free system resources from processing the most heaviest data. In order to
do so, a FPGA platform is used to process the image on the fly from the CMOS sensor.

This sensor allows the implementation of lower architecture levels at a fraction of
power required in standard CPUs by taking advantage of the inherent parallel nature
of image information and architecture pipeline structure. The substantial power reduc-
tion constitutes a fundamental advantage to the use in autonomous systems namely in
Robocup fields technology.
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It is thus possible to implement advanced sensing capabilities in low power systems
and widen the range and scope of applications. This image processing layer within
the FPGA is divided into different modules, allowing access of the overall system to
different kinds of data. As a result, the vision sensor can provide four types of data: raw
data, RGB mode data, segmented data and RLE data.

In figure 4, an information processing pipeline time diagram description is pre-
sented. A maximum latency of 500 μs is achieved from the initial pixel acquisition
in the CMOS sensor to the processed data reception at the user level application. This
maximum latency includes processing and communication delays (USB bus). The in-
terpolation, segmentation and RLE modules are similar to the software ones, for more
information see[6].

Fig. 4. Time diagram of the Embedded Hardware Vision Sensor

4 Results

The results presented in this paper where taken during a set of live Robocup Matches,
and allows to establish and understand the type of data and resources that are needed
to cope with a Robocup Vision System. This enables the use of this scenario has a
benchmark scenario for other robotics applications.

The first experiment was to monitor the amount of data that each module of the vision
system pipeline would generate during a match and how much time each processing
modules consume. In order to do so we monitored the image processing modules during
a Robocup Match. We can see the time analysis of each module by frame.

Table 1. Image Processing Modules Time Statistics (ms) during a Robocup Match

Image R.(320x240) Seg+RLE Color T Edges Blobs

Mean 6.045 0.345 0.425 0.708
St.deviation 2.032 0.375 0.696 0.979
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These experiments were made during a live Robocup Match, with a robot with two
cameras Head and Kick (2.8mm, F1.4,maxvision MVL2810M) both at 320x240 reso-
lution, placed at a vertical height of 60 cm and 50 cm accordingly.

The most time consuming module is the segmentation/RLE module. Which is never
under 5 ms, due to the minimum computational time required to perform segmentation
and run length encoding operations, to an image with a 320x240 resolution in a PIII
1.2Ghz Tualatin.

The other modules, have residual time consuming performances and do not influence
significatively the overall performance of the robot vision system.

The second experiment is intended to characterized the amount of data generated in
each of the processing modules. This tests are important, in order to understand which
parts of the system should or should not be integrated in embedded hardware and what
advantages could come from that migration. This experiment shows how the informa-
tion flows through the pipeline. We can see that the most heaviest data is processed in
the early stages of the pipeline. Which enforce our choice of migrating these modules
to an hardware embedded solution, thus achieving the same results at a fraction of the
power consumption cost.

Table 2. Image Processing Modules Dimensions Statistics during a Robocup Match

Image R.(320x240) RLE Color T Edges Blobs

Mean 1988 468.3 96.2 140.2
St.deviation 758.9 196.7 41.2 78.2

Furthermore, this statistical results obtained during a live Robocup Match, can also
be used to help the vision system to obtain self-adjusting capabilities. When the RLE
statistical numbers increase dramatically to an unexpected number during a large quan-
tity of frames, that would indicate that the segmentation parameters were off-balanced
and that the robot should re-adjust his camera settings or color configurations.

In a Robocup scenario there are some statical objects that can be used by the robot
has landmarks in order to achieve self-localization. One of them are the field goals. In
the third experiment bearing measures to a field goal were taken during a match.

In figure 5 bearing measures observed are shown for a 5 minute period of match. We
can see that there are only seven false positive occurrences during that period. These
false positive are ignored by the vision system due to the fact, that all bearing measures
have a reliability factor that in the case of the field goal, is the bearing variation of the
vertical post of the goal. This variation (see figure 5) is much higher in the false positive
cases, more than 2 degrees that the normal standard deviation of a goal post inferior to
1 degree.

Other landmarks present in a Robocup field are the corner posts and the field lines.
In figure 6a we can see a histogram, with the different range distances detection to a
corner post. There is a great deal occurrences in the 2 meters area probably due to the
robot movement.

In figure 6b a histogram showing field lines t-junction distance range of detections is
displayed.



510 H. Silva et al.

Fig. 5. Bearing measures to a goal post and standard deviation

Fig. 6. Max. Distance Range to a corner post in a Robocup field and distance measures observed
to a t-junction

5 Conclusion

In this work we presented a real-time vision system for mobile robotics and autonomous
systems applications. The presented framework architecture allows latency reduction in
sensor data reception. Very low power consumption solutions can be integrated. Our
proposed organization allows a hardware and software transparent implementation.

A dedicated hardware vision sensor was developed to implement the more time con-
suming processing steps, taking advantage of image information parallelism. A high
performance programmable logic device (FPGA) was used to process data from a
CMOS sensor capable of VGA resolutions at 60 fps. This vision sensor can use dif-
ferent image sensors with a higher frame-rate, resolutions and High Dynamic Range
Image capabilities for used in outdoors applications.

The presented results, taken from a Robocup Match, allowed a overall evaluation of
performance of the system, as well as, the characterization of the output data from each
one of the vision processing modules.

Power consumption reduction was significant. It is now possible to segment and
compress image for less than 1W. Information coherence is maintained through differ-
ent levels of abstraction in the architecture with ploughable module integration. The
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vision architecture provided clear advantages to mobile robot navigation and advanced
image perception systems, having also been applied to fire detection with Unmanned
Aerial Vehicles.

References

1. CMVision, http://www.cs.cmu.edu/∼jbruce/cmvision
2. Hager, G., Toyama, K.: X-Vision: A Portable Substrate for Real-Time Vision Applications.

In: Computer Vision and Image Understanding, January, vol. 69(1), p. 2337 (1998)
3. Hai, Z., Kui, Y., Jindong, J.: A Fast and Robust Vision System for Autonomous Mobile

Robots. In: Proceedings of IEEE Intelligent Conference on Robotics, Intelligent Systems
and Image Processing 2003, China (2003)

4. Peiig, J., Skrikaew, A., Wilkes, M., Kawamura, K., Peters, A.: An active vision system for
Mobile Robots. In: Proceedings of IEEE Intelligent Conference on Robotics, Intelligent Sys-
tems and Image Processing 2000, Takamatsu, Japan (2000)

5. Doi, M., Nakakita, M., Aoki, Y., Hashimoto, S.: Real Time Vision System for autonomous
mobile robotics. In: IEEE International Workshop on Robot and Human Interaction Com-
munication (2001)

6. Lima, L., Almeida, J.M., Martins, A., Silva, E.P.: Development of a dedicated hardware vi-
sion system for mobile robot navigation. In: Robotica 2004 International Conference (2004)

7. Martins, A., Almeida, J.M., Silva, E.P., Pereira, F.L.: Vision-based Autonomous Surface Ve-
hicle Doccking Manoeuvre. In: MCMC 2006 7th IFAC Conference on Manoeuvring and
Control of Marine Craft, Lisbon, Portugal (September 2006)

8. Martins, A., Almeida, J.M., Silva, E.P., Santos, F., Bento., D.: Forest Fire Detection with a
Small Fixed Wing Autonomous Aerial Vehicle. IAV (submitted, 2006)

9. Bruce, J., Balch, T., Veloso, M.: Fast and Inexpensive Color Image Segmentation for Inter-
active Robots. In: IEEE/RSJ International Conf. On Intelligent Robots and Systems, vol. 3,
pp. 2061–2066 (2000)

10. Pavlidis, T., Liow, L.: Integrating Region Growing and Edge Detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence 12(3) (March 1990)

http://www.cs.cmu.edu/~jbruce/cmvision


ViRbot: A System for the Operation of Mobile

Robots

Jesus Savage, Adalberto LLarena, Gerardo Carrera, Sergio Cuellar,
David Esparza, Yukihiro Minami, and Ulises Peñuelas
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Abstract. This paper describes a robotics architecture, the ViRbot,
used to control the operation of service mobile robots. It accomplish the
required commands using AI actions planning and reactive behaviors
with a description of the working environment. In the ViRbot archi-
tecture the actions planner module uses Conceptual Dependency (CD)
primitives as the base for representing the problem domain. After a com-
mand is spoken to the mobile robot a CD representation of it is generated,
a rule based system takes this CD representation, and using the state
of the environment generates other subtasks represented by CDs to ac-
complish the command. By using a good representation of the problem
domain through CDs and a rule based system as an inference engine,
the operation of the robot becomes a more tractable problem and easier
to implement. The ViRbot system was tested in the Robocup@Home [1]
category in the Robocup competition at Bremen, Germany in 2006 and
in Atlanta in 2007, where our robot TPR8, obtained the third place in
this category.

1 Introduction

In this paper is presented a mobile robot architecture, the ViRbot [2] system,
whose goal is to operate autonomous robots that can carry out daily service jobs
in houses, offices and factories. The ViRbot system has been tested with our
robot TPR8, see figure 1. This system divides the operation of a mobile robot
in several subsystems, see figure 2. Each subsystem has a specific function that
contributes to the final operation of the robot. Some of the layers of figure 2 will
be described in the following sections.

2 Virtual Environment

The virtual environment is visualized by a 3D system called ROC2. The sim-
ulation environment can be changed easily; it has multiple view ports of the
simulation; it has local or remote interaction (Internet); it can execute an user’s
subroutines written in C/C++; simulation of the robot’s movements and sensor’s
readings can be provided also by the user using C/C++.
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Fig. 1. Robot TPR8, this robot has, for sensing the environment, a ring of sonars, a
laser measurement system, a microphone and a vision system

Fig. 2. The ViRbot System consists of several subsystems that control the operation
of a mobile robot
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3 Internal Sensors

The robots used in this research have the following internal sensors that reflect
its internal state: wheel encoders and battery level sensor. Each of the sensors’
values can be read any time during the operation of the robot.

4 External Sensors

The robots have the following external sensors that sense the surrounding envi-
ronment: contact, reflective, infrared, video-cameras, microphones. Digital signal
processing techniques are applied to the signals obtained from the video-cameras
and microphones to be used in pattern recognition algorithms.

5 Simulator

The ViRbot system contains a simulator that provides the values of the internal
and external sensors that the robot has, each simulated sensor has a mathemat-
ical model. Also the simulation of new sensors can be incorporated easily.

6 Robot’s Tasks

Set of tasks that the robot needs to accomplish according to the time when it
was programmed.

7 Human/Robot Interface

The Human/Robot Interface subsystem in the ViRbot architecture has tree mod-
ules: Natural Language Understanding, Speech Generation and Robot’s Facial
Expressions.

7.1 Natural Language Understanding

The natural language understanding module finds a symbolic representation of
spoken commands given to a robot. It consists of a speech recognition system
coupled with Conceptual Dependency [3] techniques.

Speech Recognition. For the speech recognition system it was used the Mi-
crosoft Speech SDK engine. One of the advantage of this speech recognition
system is that it accepts continuous speech without training, also it is freely
available and with C++ examples that can be customized as it is required. It
allows the use of grammars, that are specified using XML notation, which con-
strains the sentences that can be uttered and with that feature the number of
recognition errors is reduced.
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Conceptual Dependency. Conceptual Dependency is a theory developed by
Schank for representing meaning. This technique finds the structure and mean-
ing of a sentence in a single step. CDs are especially useful when there is not a
strict sentence grammar. One of the main advantages of CDs is that they allow
rule based systems to make inferences from a natural language system in the same
way humans beings do. CDs facilitate the use of inference rules because many in-
ferences are already contained in the representation itself. The CD representation
uses conceptual primitives and not the actual words contained in the sentence.
These primitives represent thoughts, actions, and the relationships between them.
Some of the more commonly used CD primitives are, as defined by Schank:

ATRANS: Transfer of ownership, possession, or control of an object (e.g. give.)
PTRANS: Transfer of the physical location of an object (e.g. go.)
ATTEND: Focus a sense organ (e.g. point.)
MOVE: Movement of a body part by its owner (e.g. kick.)
GRASP: Grasping of an object by an actor (e.g. take.)
PROPEL: The application of a physical force to an object (e.g. push.)
SPEAK: Production of sounds (e.g. say.)

Each action primitive represents several verbs which have similar meaning. For
instance give, buy, and take have the same representation, i.e., the transference
of an object from one entity to another. For example, in the sentence “Robot,
go to the kitchen”, when the verb “go” is found, a PTRANS structure is issued.
PTRANS encodes the transfer of the physical location of an object, and it has
the following representation:

(PTRANS (ACTOR NIL) (OBJECT NIL) (FROM NIL) (TO NIL))

The empty (NIL) slots are filled by finding relevant elements in the sentence.
So the actor is the robot, the object is the robot (meaning that the robot is mov-
ing itself), and the robot will go from the living room to the kitchen (assuming
the robot was initially in the living room). The final PTRANS representation is:

(PTRANS (ACTOR Robot) (OBJECT Robot) (FROM living-room) (TO
kitchen))

CD structures facilitate the inference process, by reducing the large number
of possible inputs into a small number of actions. The final CDs encode the users
commands to the robot.

7.2 Speech Generation and Robot’s Facial Expressions

The text to speech generation system used is called Festival [4] that is freely avail-
able. In human to human communication, facial expression plays an important
role, so we consider that the same thing applies to human to robot communi-
cation. Thus, one of our robots contains a mechatronic head that shows simple
expressions through movements of it, the opening of its mouth, the movement
of its eyes and by modifying its eyebrows. The eyebrows are created using an
array of LEDs that are turned on and off that creates different face expressions,
see figure 3.
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Fig. 3. In A, the robot’s face shows that the robot did not understand the given
command; in B, the robot’s face shows that it understood the spoken command and
that it is ready to execute it

8 Perception

The perception module obtains a symbolic representation of the data coming
from the users and the robots sensors. The symbolic representation is generated
by applying digital processing algorithms on the data coming from the sensors.
With this symbolic representation a belief is generated.

8.1 Vision Subsystem

The vision subsystem consists of a robust implementation of an object tracker
using a vision system that takes in consideration partial occlusions, rotation and
scale for a variety of different objects. The objects are represented by feature
points which are described in a multi-resolution framework, that gives a repre-
sentation of the points in different scales. The interest points are detected using
the Harris detector, and the description was based in an approximation coined
SURF (Speeded-Up Robust Features) [5]. The ifound object is tracked by an
Unscented Kalman Filter (UKF) [6].

9 Cartographer

This module has different types of maps for the representation of the environ-
ment: Raw maps are obtained by detecting the position of the obstacles using
the robot’s sonar and laser sensors. Symbolic maps contain each of the known
obstacles defined as polygons, that consists of a clockwise ordered list of its ver-
texes. The Cartographer subsystem contains also topological and probabilistic
(Hidden Markov Model) maps of the environment [7].
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10 Knowledge Representation

A rule based system is used to represent the robot’s knowledge, that is rep-
resented by rules, each one contains the encoded knowledge of an expert. In
the ViRbot the rule based system CLIPS is used, an expert system shell, freely
available and developed by NASA [8].

11 World Model and Activations of Goals

The belief generated by the perception module is validated by the cartogra-
pher and the knowledge representation modules, thus a situation recognition is
created. Given a situation recognition, a set of goals are activated in order to
solve it.

12 Hardwired Solutions

Set of hardwired procedures that solve, partially, specific problems. Procedures
for movement, transference of objects, pick up, etc.

13 Task Planner

In the ViRbot planner subsystem there are two planning layers, the upper is the
actions planner, based on a rule based system, and the lower layer the movements
planner, based on the Dijkstra algorithm.

13.1 Actions Planner

The Robot is able to perform operations like grasping an object, moving itself
from on place to another, etc. Then the objective of action planning is to find a
sequence of physical operations to achieve the desired goal. These operations can
be represented by a state-space graph. Thus, action planning requires searching
in a state-space of configurations to find a set of the operations that will solve a
specific problem. Internally, the actions Planner is built using CLIPS, that has an
inference engine and this uses forward state-space search, that finds a sequence
of steps that leads to a solution given a particular problem. Actions planning
works well when there is a detailed representation of the problem domain. In the
ViRbot architecture the actions planning module uses conceptual dependency
as the base for representing the problem domain. After a command is spoken, a
CD representation of it is generated. The rule based system takes the CD repre-
sentation, and using the state of the environment it will generate other subtasks
represented by CDs and micro-instructions to accomplish the command. The
micro-instructions are primitive operations acting directly on the environment,
such as operations for moving objects.
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For example when the user says ”Robot, go to the kitchen”, the following
CD is generated:

(PTRANS (ACTOR Robot) (OBJECT Robot) (FROM Robot’s-place) (TO
Kitchen))

It is important to notice that the user could say more words in the sentence,
like ”Please Robot, go to the kitchen now, as fast as you can” and
the CD representation would be the same. That is, there is a transformation
of several possible sentences to a one representation that is more suitable to be
used by an actions planner. All the information required for the actions planner
to perform its operation is contained in the CD.

13.2 Movements Planner

If the command asks the robot to go from one room to another the movements
planner finds the best sequence of movements between rooms until it reaches
the final destination. Inside of each room the movements planner finds also the
best movement path considering the known obstacles, that represent some of the
objects in the room. Thus, the movements planner uses this information to find
the best path avoiding the obstacles that interfere with the goal. The best path
is found among several paths, according to some optimization criteria and using
the Dijkstra algorithm. For the previous example where the robot was asked to
go to the kitchen, the movements planner just needs to find the best global path
between the Robot’s place and the Kitchen, thus the action planner issues the
following command to the movements planner:

(MOVEMENTS-PLANNER get-best-global-path Robot’s-place to Kitchen)

And the answer of the movements planner is the following:

(best-global-path Robot′s − place place1 place2...placen Kitchen)

Now a new set of PTRANS are generated asking the robot to move to each
of the places issued by the planner:

(PTRANS (ACTOR Robot) (OBJECT Robot) (FROM placei) (TO placej))

For each of these PTRANS it is asked to the movements planner to find the
best local path from placei to placej:

(MOVEMENTS-PLANNER get-best-local-path placei to placej)

And the answer of the movement planner is the following:

(best-local-path node1 node2...nodem)

in which each nodei is part of the topological map whose coordinates are xi

and yi that the robot needs to reach.

14 Behavior Methods

After the movements planner finds the nodes where the robot needs to go, the
Behavior subsystem tries to reach each of them, if it finds unexpected obstacles



ViRbot: A System for the Operation of Mobile Robots 519

during this process it avoids them. The Behavior subsystem consists of behaviors
based on potential fields methods and state machines, all these controls the final
movement of the robot [9].

15 Control Algorithms and Real and Virtual Actuators

Control algorithms, like PID, are used to control the operation of the virtual and
real motors. The virtual or the real robot receives the commands and executes
them by interacting with the virtual or real environment and with the user.

16 Conclusions and Discussion

The ViRbot system was tested in the Robocup@Home category in the Robocup
competition at Bremen, Germany in 2006 and in Atlanta in 2007, where our
robot TPR8, obtained the third place in this category. Some videos showing the
operation of the ViRbot system can be seen in http://biorobotics.fi-p.unam.mx.
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Abstract. Grounding robot representations is an important problem in Artificial 
Intelligence. In this paper we show how a new grounding framework guided the 
development of an improved locomotion engine [3] for the AIBO. The im-
provements stemmed from higher quality representations that were grounded 
better than those in the previous system [1]. Since the AIBO is more grounded 
under the new locomotion engine it makes better decisions and achieves its  
design goals more efficiently. Furthermore, a well grounded robot offers sig-
nificant software engineering benefits since its behaviours can be developed, 
debugged and tested more effectively.   

Keywords: Robotics, Perception, Knowledge Representation. 

1   Introduction 

In order for a robot to achieve its objectives it must ground its representations: a 
grounded representation is one where the entities in the representation correspond mean-
ingfully to the entities they represent [2, 7, 10]. In this paper we use a new grounding 
framework [12] to drive the design of a robot locomotion system and describe the value 
and benefits derived from that design. The main idea is that the grounding framework 
can not only be used at a theoretical level to analyse, evaluate and compare grounding 
capabilities in robots, but it also offers a practical guide to assist the design and con-
struction of more reliable and adaptable robots. A major aim of modern science and 
engineering is to deploy dependable and flexible systems that are easy and cost effective 
to manage over their lifetime as their requirements and surrounding environment 
evolves and changes. Achieving this aim for systems like robots operating in complex 
and dynamic environments has proved to be extremely challenging. A poor understand-
ing of grounding has been identified as major research bottleneck [2, 6, 7, 9, 10, 11]. In 
essence, the grounding problem is the challenge of designing and managing internal 
representations so that they meaningfully reflect the entities they are supposed to be 
representing. For example, how do we design representations of a robot’s body so that it 
that can be appropriately managed by an intelligent control and behaviour system. 
Grounding involves building and maintaining coherent representations that correspond 
meaningfully to the entities they represent, whether the entities are physical, abstract, 
sensed, perceived, postulated, or simulated. A major challenge in addressing the ground-
ing problem is not only in designing high quality representations as such but designing 
representations that are adaptable and conducive to change. In section 2 we describe the 
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grounding problem and the new grounding framework [12]. An AIBO robot system [1, 3] 
is described in section 3, in particular AIBO body, sensors and actuators, and the new 
Locomotion Engine. Section 4 describes the grounded representation guided design, and 
demonstrates how a grounding approach can drive design and development towards more 
resilient and reliable robotic systems.  

2   The Grounding Problem 

According to Brooks [3] “the world is its own best representation”, and so if a robot only 
had to deal with the current state of the world then there is no necessity for representations. 
Since future world states in general are not a feature of the current world state, robots that 
need to plan and anticipate future world states in order to achieve their design goals re-
quire representations. Furthermore, the better a robot’s representations are grounded, the 
more effectively it will achieve its goals, the more appropriate its behaviours and the 
higher the quality of its decisions. As a result robot representation design is a key area of 
interest in Artificial Intelligence. A grounded representation does not require that every 
entity in the representation be linked to a corresponding physical manifestation, but that a 
meaningful relationship exists between the entities in the representation and the entities 
being represented [12]. Maintaining a correspondence between representations of physical 
objects and the objects themselves is important but so too are the representations of object 
functionalities, relationships between objects, and as well as the descriptions of ways to 
interact with specific objects, etc. For the purpose of understanding grounding in robots, it 
is insightful to classify representations using the hierarchy of Gärdenfors [5] which de-
scribes the crucial relationships between three key representational entities: sensations, 
perceptions, and simulations. Sensations are immediate sensorimotor impressions, percep-
tions are interpreted/processed sensorimotor impressions, and simulations are detached 
representations, i.e. they are not tied to perceptions of the current state of the world. Sensa-
tions provide systems with an awareness of the external world and their internal world. 
They exist in the present, are localised in the body/system, and are modality specific, e.g. 
visual, auditory, not both. Perceptions encapsulate more information than raw sensorimo-
tor information [2, 5].  Representations can be derived from information that has been 
gathered from a wide range of sources e.g. internal and external sensors, internal and ex-
ternal effectors, external instruments, external systems, etc. In this paper we focus on 
grounding representations derived from cued internal sensations and perceptions generated 
from a robot’s body. The grounding framework [12] is motivated by the need to under-
stand and build sophisticated systems such as robots that do (some of) the grounding 
themselves rather than systems that are completely grounded with the assistance of human 
grounding capabilities. It comprises five essential elements which can be as detailed as 
required for the purpose of the analysis: 

1. System Objectives – description of the system objective, goals, tasks &  activities 
2. Architecture of Grounding Capability - a description of the underlying system 

architecture that supports or implements the grounding capability. 
3. Scope of the Analysis - a detailed description of the scope of the analysis. 
4. Nature of the Grounding Capability – relative to the grounding architecture. 
5. Groundedness Qualities - includes a description of the pertinent groundedness 

qualities relative to each architectural component of the grounding capability.  
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All five components of the framework are related, e.g. the objectives and the scope 
will often determine how the qualities of groundedness are selected and assessed. The 
groundedness qualities identified as crucial to improving the Locomotion Engine are: 
faithfulness, correctness, transparency, accuracy, self-awareness, flexibility, adapta-
bility and robustness. 

3   AIBO Robot System and Locomotion Engine 

The AIBO is a four legged robot developed by Sony. The main AIBO sensors and 
actuators are illustrated in Figure 1 below. Internal motors are used to move the AIBO 
body parts. The mouth has one degree of freedom; each leg has three, each ear one, 
and the tail two degrees of freedom.   
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Fig. 1. AIBO sensors and actuators [Source: www.sony.com] 

Our robotic system architecture [1, 4] is designed for soccer play on an AIBO plat-
form. In the remainder of the paper we focus on the grounding of a robot’s representa-
tions for improving the design of locomotion and behaviour. The Locomotion Engine 
[4] calculates and controls all locomotive movement of the robots. The robots walk 
with the bent fore-elbow stance adopted by most teams in the RoboCup Four-legged-
league. The engine uses a static gait for all walking motions on the field. This in-
volves the synchronous movement of diagonally paired legs; that is, the front left paw 
moves in synchronization with the back right paw while the other pair moves out of 
phase by half a step, as illustrated in Figure 2.                
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Each paw follows a particular locus and is interruptible at two specific points only as 
shown in Figure 3. A full step is when the paw moves around the locus and returns to its 
initial position and a half step is when the paw moves from one interruptible position to 
the other. This simple yet effective gait allows for desirable speed and stability as there is 
always two legs in contact with the ground at any given time. It is sometimes required that 
the robots move to a stable position before performing an action such as a kick. This stable 
position occurs when all four paws are situated at the home positions of their correspond-
ing loci. The home position is the interruptible position located on the ground, which lies 
between the two extreme locus values as shown in Figure 3. The path each foot takes 
when in the air depends on the particular locus used. The locus path guides the robots paw 
through the air in a particular pattern and along the ground. Several successfully imple-
mented loci including rectangle, ellipse, and raised rectangle each give rise to different 
walk types in terms of speed and stability. During the process of a step, the engine calcu-
lates the next point to move the robots paw on the chosen locus. It then uses this point to 
calculate the individual actuator joints by means of inverse kinematics and the parameters 
of the given walk. Controlling the walk stance, direction and speed requires five input 
parameters. These inputs are determined by an external module that commands the robot 
to complete an action. The input parameters are: type of walk/stance, forwards movement, 
strafe (sideways movement), turning movement, and speed. These input parameters are 
passed to the behaviour control engine when the robot decides to move. Each command is 
delivered as input parameters, which the engine uses to calculate the next uninterruptible 
half step to perform. The half steps are uninterruptible in that once they commence, they 
must complete regardless of any new commands. This allows the robot to take on a stable 
stance before commencing further action such as another half step or a kick. Each of these 
calculated steps incorporates a combinational movement of the Forward, Strafe and Turn 
directions. Each walk type corresponds to a particular set of unique parameters. They are 
fine-tuned for use in different situations by adjusting the many parameters associated with 
each leg. Having parameters associated with each leg allows total independent leg control 
and unique locomotive actions. The parameters for each of the four legs are shown in 
Figure 6: Bounce Height – the amount of bounce of each leg modeled over a sinusoid; 
Shoulder Height – the distance between the shoulder and the ground; Step Height – the 
maximum height at which the paw is lifted off the ground; Step Position X – the side dis-
tance between the paws home position & body; Step Position Y – the forward distance 
between paws home position & body. 

4   Grounded Representation Driven Design  

The use of a grounded representation design in the AIBO Locomotion Engine [1] led 
to major improvements to the robot soccer team [4]. The groundedness qualities we 
identified as being crucial to develop in the new design are (listed in order of prior-
ity): faithfulness, correctness, transparency, accuracy, self-awareness, flexibility, 
adaptability and robustness. Several new features were developed as a result of our 
grounded representation driven approach such as the following major enhancements 
to previous designs: compensation for asymmetric weight distribution, interpolated 
actions, action interrupt abilities, independent loci and variable locus points, inde-
pendent binary file, and Delta factor for the ERS-7 model of the AIBO.  

Compensation for asymmetric weight distribution: The robot movements are slightly 
biased to one side as a due to the uneven weight distribution of the robot which results 
from the off-centre placement of the robot’s lithium battery. This has a significant impact 
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on the walking direction of the robot if all four legs perform the same walking motions 
without calibration. An advantage of having independent representations for legs means 
that calibration of straight-line movement can be achieved by use of factors that allow 
each leg to have weighted movements, that is, particular legs are permitted to move more 
then others in a single step. The movements are weighted in units of percentage. There is a 
factor for every direction and leg combination, which gives rise to a large number of factor 
parameters (six factors × four legs), however this representation gives the AIBO the poten-
tial of achieving maximal control of its limbs. Each walk type has its own set of factors 
which are applied to each leg: Forward Factor, Backward Factor, Turn Right Factor, Turn 
Left Factor, Strafe Right Factor, and Strafe Left Factor. Without calibration, experiments 
show that the robot moves off to the right when trying to walk straight ahead. By adjusting 
the front Forward Factors so that the front left paw moves less than the front right paw, a 
slight pivot point is placed upon the front left paw. The pivot forces the robot to correct the 
biased movement, which results in straight-line movement as initially expected. 
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Fig. 4. Calibration using Independent Factors 

These factors allow the AIBO to perform unique walks and kicks and other move-
ments, which can be used for specific situations such as quick ball-handling maneu-
vers. The grounded control that the factors provide gives an unlimited freedom of 
configurable motions for game play, and ensures that the robots representations of 
motion are the well grounded in accordance with design criteria. 
 

Interpolated Actions: All robot actions which include kicks, special movements and 
get up routines are made up of a number of position frames. Each position frame con-
sists of a string of positions for every actuator on the robot. Actions on our previous 
design [1] were based on the hold count parameter on every frame.  Sequencing through 
an action meant that the robot would snap to each position frame and hold it there ac-
cording to the hold count in seconds. The new more grounded Locomotion Engine 
incorporates an extra parameter called the interpolation count. This parameter deter-
mines how fast (in seconds) each position frame is interpolated as demonstrated in the 
example below where knee angles are given in degrees. In the previous design 
FrontLeftKnee [1] had its hold count set to 0.8 seconds, and in the new design [4] it has 
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its interpolation count at 0.5 seconds and hold count set to 0.3 seconds. Interpolated 
actions allow for smoother robot motion and hence improve the robots stability and 
grounding. Not only does this prevent slipping but also improves vision quality when 
the robot is in motion. From a grounding perspective the interpolation version is more 
faithful to the motion of the robot than the un-interpolated version. Furthermore, not 
only did this allow smooth actions but also a less dependency on the behaviour module 
to move to points between two positions. This provided the locomotion engine more 
control over the robots movements and hence increased the AIBO’s self-awareness. 
 

Action Interruptibilities: The new more grounded Locomotion Engine allows each 
action to fall in one of the following four categories: (i) Not Interruptible, (ii) Head 
Interruptible, (iii) Legs Interruptible, and (iv) Action Interruptible. The interruptibility 
of an action allows actions and walks the ability to override other actions when neces-
sary. This allows complex sequences of actions to be performed during runtime. Not 
Interruptible means that the action cannot be interrupted by anything once it is started 
with the exception of the get up routine. Head interruptible allows only the head to be 
controlled by another action, even if the overriding action contains other movements 
besides the head, only the head movements will be executed with everything else 
continuing with the previous action. Legs Interruptible allows only the legs to be 
controlled by another action, e.g. if the robot wished to complete a head kick and 
walk forward at the same time, the head kick must be set to Legs Interruptible. Action 
Interruptible allows the entire robot to be overridden by another action or walk. Ac-
tion interpolation and interruption capabilities together endow the AIBO with an im-
portant highly grounded stability awareness. In our previous version; actions, kicks 
and walks were managed by a behavior module that included knowledge of when to 
change from one action to another. If the behaviour module was not well grounded 
then it did not do this correctly or in an orderly fashion, and as a result the robot often 
became unstable. In the new grounded version actions, kicks, and walks each had new 
interruptibility parameters which prevented an action to occur during another at cru-
cial moments. This ensures that the robot remains stable. 
 

Independent Loci and Variable Locus Points: The previous locomotion system was 
limited in that there were only three loci shapes to choose for the walk engine as ex-
plained earlier, and all legs were required to use the same locus. In our new Locomo-
tion Engine the front and back legs have independent loci with each locus containing 
a number of user defined points. This flexibility ensures that the Locomotion Engine 
is able to find a fast walk using reinforcement learning algorithms.  Each point of the 
locus has three parameters, X, Y and Time. X and Y determine the location of the point 
and Time determines the percentage of time between specific points. The number of 
locus points can also be chosen to create many different shapes, thereby increasing 
the flexibility of the AIBO’s movements.  

Delta Factors: The new grounded Locomotion Engine is implemented on the ERS-7 
and its predecessor AIBO 210. The ERS-7’s body is in a polished plastic casing and 
the leg surface it much smoother than the AIBO 210s, which lead to a number of 
problems when ERS-7s were turning. In order to keep the ERS-7 robots grounded an 
additional factor was introduced into the walking parameters, namely the Delta factor. 
The Delta factor essentially determines how much skid steering the robot should 
complete depending on the amount of turn required as illustrated in Figure 5. By  
using skid steering, the robot is essentially moving like a tank when turning. To turn  
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Fig. 5. No Delta Factor and Delta Factor – Turning Right Example 

right as shown in Figure 8, the legs on the right must move as if the robot is moving 
backwards whereas the legs on the left must move as if the robot was going forwards. 
The Delta factor determines how much of this behaviour occurs whilst turning.  

The introduction of the Delta factor lead to a heightened awareness of walk calibration 
so that when the AIBO’s control module instructed it to move forward then it did so in a 
straight line. In our new grounded locomotion engine each limb has calibration factors that 
are customized to each different walk. The introduction of factors removed the previous 
need for the behaviour module to compensate for miscalibrations and allowed it to specify 
motion without having to take weight distribution into account since the new more 
grounded Localization Engine that directly since it had a heightened awareness of the 
relationship between body movements and higher level goals in terms of movement. The 
Delta factor determines how much of this behaviour occurs whilst turning. 

 

Reconfigurable Walks, Actions and Kicks: The new grounded Locomotion Engine 
is capable of adding and updating all walks, actions and kicks on-the-fly. The con-
figuration is completed via text files which can be updated via wireless communica-
tion while the robot is in play. In this way the robots movements are detached from 
specific client applications. This flexible configuration allows any application that can 
alter text files the ability to configure and create any new walks, actions or kicks. In 
terms of groundedness this additional feature not only increases the AIBO’s flexibility 
but also its transparency therefore enhancing its grounding capability.  

 

Locomotion Trainer: In order to meet the grounding requirements for transparency 
we built the so called Locomotion Trainer V2 which is a Microsoft Windows based 
tool that is used to calibrate and remotely control the robots. It allows the creation of 
actions and walks. All parameters can be changed on the fly and the results can be 
observed immediately. Successful sets of parameters can be saved and stored into 
*.txt files for use on the robots. The Trainer can also monitor the odometry readings. 
Calibration of walk factors can be completed using this program.  

Learning to Walk: A major advantage of the new grounded Locomotion Engine is 
that is offers significantly more scope for learning than the previous version since the 



 Grounded Representation Driven Robot Motion Design 527 

locomotion parameters are more grounded within the AIBO’s body and also more 
transparently integrated into the robots control system. The new grounded design 
supports a wide range of algorithms including genetic algorithms, reinforcement 
learning, and human assisted learning.  Unsurprisingly, we found that a combination 
of approaches led to the best results. Speed was not the only important factor in de-
termining the machine learning techniques. Other factors included smoothness so that 
the robot’s camera did not bounce around causing difficulties with vision and stability 
so that the robot would not fall over, particularly when coming to a halt.  

5   Conclusion 

In this paper we have advocated a grounded representation driven approach to robot 
design based on a new grounding framework [12], and we illustrated the following 
benefits using an AIBO Locomotion Engine: (i) heightened awareness of stability and 
calibration, (ii) improved ability to respond to falling over, (iii) improved ability to 
turn with skid steering, and (iv) improved ability to learn new actions. The grounding 
driven design exhibits a range of desirable properties such as faithfulness, correctness, 
transparency, accuracy, self-awareness, flexibility, adaptability and robustness. The 
AIBO representations were more faithful to the robot body state, i.e. the actual body 
part locations against measured locations of actuators; they are also more correct and 
accurate. The design offered new flexibilities and as a result supported a high degree 
of adaptability in locomotion and higher level behaviours. The AIBO attained a 
higher level of awareness in the new design and due to the grounded motion, and 
behaviour was more robust and resilient. 
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Abstract. We present a methodology for deriving design methodology for 
autonomous robots. We designed this methodology in the context of a robotics 
course in high schools. The motivation for designing this new methodology was 
improving the robots' robustness and reliability and preparing students for 
becoming better designers. The new methodology proved to be highly successful 
in designing top quality robots. In the methodology design, we explored and 
adapted design methods to the specific designers, the nature of the product, the 
environment, the product needs, and the design context goals. At the end of this 
comprehensive design, we selected a synergetic integration of six methods to 
compose the methodology for this product context: conceptual design, fault 
tolerant design, atomic requirements, using fuzzy logic for the control of robotics 
systems, creative thinking method, and microprogramming design.  

1   Introduction 

In this paper, we deal with the design of robotics systems. Within this research, we 
developed a new design methodology for robotics systems [1]. In order to conduct this 
research we needed teams that actually designed. In order to test several design 
methodologies in a large-scale comparative study to get reliable and valid results, we had 
to choose an environment that provides such scale. Consequently, the research could not 
be implemented in industry because it is not possible to interrupt the ongoing work of 
many engineers in industry. An alternative environment, where a learning process takes 
place and has a more structured setting than industrial product development, is the 
education system. We decided to conduct the research among senior students majoring in 
science from four high schools, who within a robotics course [2], build autonomous 
mobile robots for participation in an international robotics contest. We discovered after 
several years of conducting this course with conventional design methodology that 
consistent problems were manifested [3].  

The primary goal of the course was to teach the subject of robotics to high school 
students. The following were the course overall objectives: 1. Acquiring technical 
knowledge; 2. Acquiring a system thinking approach; 3. Improving skills of problem 
solving, decision making, and learning; 4. Developing critical and creative thinking 
abilities; 5. Experiencing development of a product, with time and budget restrictions; 
6. Developing teamwork skills; 7. Improving students' design skills; and 8. Improving 
students’ perception of technology. 
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Until now, we did not take into account the subject of the design course, namely 
robotics. Fortunately, robotics products are classic examples of contemporary designs; 
therefore, the subject – robotics – does not change our analysis. It merely fixes the 
task of acquiring technical knowledge to deal with robotics related subjects. 

The main goal of our research was to develop a new context dependent integrative 
design methodology for robotics systems, and to measure its success in an existing 
high school robotics course context. 

We used the following design methods as a selection tool: Function-means trees, 
FMEA (Failure Mode and Effect Analysis), failure analysis, QFD (Quality Function 
Deployment), Pugh's concept selection, and AHP (Analytic Hierarchy Process) [4]. 
As an outcome we decided to integrate six design methods in the new design 
methodology [1]: 1. Conceptual design; 2. Fault tolerant design; 3. ASIT creative 
thinking; 4. ATR design; 5. Microprogramming design; and 6. Fuzzy logic control 
design. We introduced the new design methodology for robotics systems into the 
course. We tested the performance of the methodology in the years 2003-2005 [5].  

Figure 1 describes the roadmap of this study. It is composed of theory development and 
course design followed by course implementation. The results of the course feed back into 
the theory development and the course was redesigned. The theory underlying the course 
design is a synthesis of ideas, drawn from different disciplines: engineering design, 
robotics, learning paradigms, engineering education, project base learning, contest 
oriented design, and learning by design. These disciplines provide the guidance in the 
course design, its implementation, and testing. The course design starts from requirements 
that are translated into course goals to be addressed by a design of the design methodology 
to be integrated into a detailed curriculum, which is implemented and tested. The results 
lead to reflection that helps improve our understanding and course design. 
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Fig. 1. Roadmap for designing designers 
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While there have been many studies on the design of curriculum in education and 
other fields (e.g., [6], [7], [8]), there is no single large-scale study on teaching design 
that was tested in a controlled experiment and produced conclusive results as the 
present study.  

2   Method 

2.1   Design of the Design Methodology (1c in Figure 1) 

Since the students had no background knowledge in design, and since they had to 
complete the course with a quality design in order to compete in the competition, we 
decided to teach them enough design methods that would allow them to design and 
build excellent robots. We have also used these methods to teach other general concepts, 
such that imprecise information could lead to very precise behavior, as in fuzzy logic.  

Design environment should allow for a meaningful design experience. The design of 
a complex product as a mobile robot allows for such experience. The contest supplies 
both time limits for project completion and environment for testing the results. 
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Fig. 2. Course design methods leading to robotics design methodology 

Design methods are seldom taught in high schools. Moreover, in spite of their 
importance, it is even uncommon to teach them in universities. By and large, universities 
focus on analytical rather than synthesis skills. Our reasons for teaching design methods 
stem from the course’s 2nd to 7th objectives. Moreover, design methods serve as guidelines 
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that help students (as well as designers in real design projects) focus on the critical features 
when developing any engineering product. In addition, design methods glue technology to 
science. They help students realize the relations between the different science subjects 
learned at school and between science and the engineering work in robotics. These are 
central to understanding robotics as a discipline. 

Further support for systematic teaching of design methods arises from feedback 
obtained from previous courses on the subject. One observation was that ignorance of 
design methods prevented effective use of expensive equipment purchased to support 
new technology and science related courses. Another observation was that lack of 
knowledge about design methods led to numerous occasions in which teams designed 
robots that violated simple engineering practice, resulting in quick robot failures. While 
product success is not mandatory for course success, these easily avoidable failures led 
to students and teacher disappointments, which are undesired. The logic for designing 
the design methodology and selecting the design methods is presented in figure 2.  

2.2   First FMEA Analysis 

We did a FMEA analysis for of the common design methods in general ([9], [10]) and 
specific to the context. We will discuss these methods and present in summary the 
considerations for disqualifying or accepting each method for further analysis. The 
design methods were: 

1. Selection design – It involves choosing one item from a list of similar items. 
There is a need to evaluate the potential solutions versus our specific requirements to 
make the right choice. This is done much more seriously with conceptual design 
methods. Consequently, we disqualified this design method. 
2. Product architecture design deals with the arrangement of the physical elements 
of the product to carry out its required functions. This is important for any complex 
system, so this method is kept for further analysis.  
3. Configuration design deals with how to assemble all the designed components 
into the complete product. As the robot has components that have to be assembled, we 
decided to move this method to next stage.  
4. Parametric design identifies the attributes of parts in the design configuration, which 
become the design variables for parametric design. The objective is setting values for the 
design variables that will produce the best possible design considering both performance 
and manufacturability. As the robot's subsystems have different attributes and optimal 
performances are needed, we decided to move this method to further analysis. 
5. Original design – Any time the design requires the development of a process, 
component, or assembly not previously in existence, it calls for original design. This 
sort of design being original does not supply tools for doing specific design and thus it 
is not relevant here. We disqualified it from further analysis.  
6. Conceptual design (CD) is one of the two most critical steps in product development. 
It is the basic design method; it places things into order. It allows to realize the big picture, 
and to see the important factor out of the large amount of data. It also can be used to divide 
the work between team members quite effectively and complete the project on time. 
Hence, we decided to move it to the next stage for further analysis. 
7. Concurrent design deals with cross-functional design team, where skills from the 
functional areas are embedded in the team. This allows for parallel design. This mainly 
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refers to heavy designed products where for example the manufacturing process 
development group starts its work as soon as the shape and materials for the product are 
established, and the tooling development group starts its work once the manufacturing 
process has been selected. In our case, we talk about small teams where there are no 
design skills differences among team members, there are no manufacturing or tooling 
teams, and there is no much meaning to parallel development. That is why we 
disqualified this method for further analysis.   
8. Atomic requirements (ATRs) design – Atomic (which cannot be further divided 
to two or more requirements) Requirements design is a tool that helps to understand 
the functionality and debugging requirements; it allows to divide the requirements 
into very fundamental, thus simple to understand requirements. It also helps to clearly 
identify unnecessary, overlapping, or conflicting requirements, isolate bug areas, and 
make clear what is to be done to implement the requirements. In the debugging mode, 
and problem solving, each requirement can be tested easily and separately. It is an 
efficient communication tool between people of different backgrounds. It is suitable 
for making more modular and more convenient to debug and fix robot systems. 
Hence, we decided to move it to the next stage of further analysis. 
9. Ergonomic design deals with interaction between people and the product. As some 
interaction occurs between the team members and the robot in the testing and operating 
the robot, we decided to move this method to the next stage of further analysis. 
10. Microprogramming (uP) design is common with products that include a 
microprocessor or a microcontroller. It  allows for designing the robot control by moving 
between two different representations that make it easy for designing, debugging, and 
coding, simultaneously [11]. Microprogramming design presents the duality between two 
representations of control schemes and that even though it is more “natural” to use one to 
describe the robot operation, it is better to use another in order to be more robust and 
efficient. It also shows a way for being more effective when for example it is possible to 
combine two or more control schemes and save resources. Generally, it shows duality in 
two representations and understand that different representations are suited to different 
needs – a powerful problem-solving principle. The robot's control was based on a 
microcontroller, so we moved this method to next stage. 
11. Industrial design is concerned with the visual appearance of the product and the 
way it interfaces with the customer. These two are irrelevant to our robot, and thus 
will not be considered further. 
12. Fault tolerance (FT) design is crucial for creating robust products and it is 
inseparable method of every good design. It brings insight of the difference between 
products that are designed according to requirements, and robust products that can 
sustain faults up to a certain degree. It also introduces the possible faults during the 
design phase which improves the ability to identify and overcome problems. This 
influences on being more careful when design the robot parts, for example, the 
sensors array. It also demonstrates that in unstructured environments, no design could 
survive without making it robust to faults because it is usually impossible to foresee 
all potential situations. We moved it to the next stage. 
13. ASIT (Advanced Systematic Inventive Thinking) creative thinking design is a 
systematic method for creative thinking, which is designed especially for problem 
solving. It is important when a solution to a non-trivial problem is needed. By using 
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this method, it is possible to solve complicated problems. It seems fundamental in all 
design stages. We moved it to further analysis.   
14. Design for serviceability is concerned with the ease with which maintenance can 
be performed on a product. Products often have parts that are subject to wear and that 
are expected to be replaced at periodic intervals. That calls for a maintenance service. 
The robots built by the students are not a product that is intended for an extended use. 
There is no need for periodic service like oil replacement in cars. The part of design 
for easy access for parts replacement is covered in conceptual design. Hence, we 
decided to disqualify this method for further analysis. 
15. Fuzzy logic (FL) helps in simplifying things related to motors control. It is more 
straightforward and can be checked in an easy way, compared to other control 
methods. It is more intuitive to the students and is faster in implementation than other 
control methods. Fuzzy logic control design is used successfully in industry and we 
thought it would be adequate to move it to the next stage. 
16. Design for the environment is concerned with issues such as recycling, 
environmentally friendly materials, product waste minimization, packaging recovery, 
and noise reduction. Some of the robot parts are reused from previous years' 
materials, so we moved this method to next stage. 
17. Detail design is the way to realize the product. We will move this method for 
further analysis. 
18. Design for manufacturability – As the robots will not be manufactured beside for 
the project, we disqualified this method from moving to the next stage. 
19. Usability design – here the designer fits the product to user's physical attributes 
and knowledge, simplify user tasks, and make the user controls and their functions 
obvious. This is irrelevant for the course autonomous mobile robot, so we disqualified 
this method from further analysis. 
20. Design for reliability is quite similar to fault tolerance design (clause 12), which 
makes it redundant. That is why we disqualified it from further analysis.  

After this session, 11 methods remained as candidates: conceptual design, ergonomic 
design, product architecture design, atomic requirements design, microprogramming 
design, fault tolerance design, parametric design, configuration design, ASIT creative 
thinking design, fuzzy logic control design, and detailed design. 

2.3   QFD Analysis 

We performed QFD analysis for selecting the design methods according to the criteria 
presented in table 1. The criteria were treated as the requirements and the design 
methods as the engineering characteristics.  

Table 1. Robot's performance evaluation criteria 

Criteria Criteria
1 Success in the contest 8 Fast navigation to all rooms 
2 Driving well in corridor 9 Overcoming uneven floor
3 Making 90 and 180 degrees turns 10 Obstacle avoidance
4 Driving well in reverse mode 11 Non tethered robot operation
5 Finding a white line on a black background 12 Sound activation of the robot
6 Finding a lit candle in a room 13 Navigation from each room back to starting point 
7 Fast extinguishing of a lit candle  
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Table 2 presents the QFD analysis [10] for choosing the appropriate design 
methods. Based on the criteria, the “whats” are listed in room 1. Room 4 lists the 
various design methods that should be checked against the criteria. Next, we turn to 
room 2. The criteria importance was established by interviewing teachers and 
mentors, and allocating the views along a 1-5 scale, where 5 is the highest. The 
previous years' robots were ranked according to the way in which they satisfied 
requirements, on a 1-5 scale, and subsequently, the planned robots were rated against 
the requirements. In room 3, the ratio between the planned to previous robots is called 
the improvement ratio. The product of criteria importance x improvement ratio gives 
the total improvement ratio. The relative weight is each value of total improvement 
ratio weight divided by the sum of all values of importance weight. The relationship 
matrix, room 6, tells us how each design methods help attain the criteria list. Here a 
strong impact is worth 9, a medium high impact 5, a medium low impact 3, and a 
weak impact 1. The importance of the design methods in room 7 is determined by 
multiplying each of the cells in the matrix by its relative weight and summing each 
column to give the absolute importance. The relative importance in room 8 is 
obtained by dividing the absolute importance by the sum of all absolute importance 
values. Six methods rank highest and almost twice as high as the next in line: 
conceptual design, fault tolerance design, atomic requirements design, ASIT creative 
thinking method, use of fuzzy logic in robot control, and microprogramming design. 

Table 2. QFD analysis of design methods 
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1. Performance 9 1 9 9 9 9 9 9 9 9 9 5 4 5 1.3 6.5 0.058
2. Real time hardware

failure resistance
9 1 1 5 5 9 1 3 5 9 1 5 2 5 2.5 12.5 0.111

3. System simplicity 9 1 3 9 9 5 1 1 9 9 1 4 3 4 1.3 5.2 0.046
4. Flexibility 9 1 9 5 9 9 5 1 9 9 1 4 2 5 2.5 10.0 0.089
5. Robot reliability 9 1 3 9 5 9 5 5 5 9 3 5 3 5 1.7 8.5 0.076
6. Software modularity 5 1 1 9 9 9 5 1 5 3 1 3 2 5 2.5 7.5 0.067
7. Robot testing ability 9 1 9 9 9 9 1 1 9 9 3 4 2 5 2.5 10.0 0.089
8. Fast hardware fixing 9 3 9 9 1 5 1 3 9 1 1 4 2 4 2.0 8.0 0.072
9. Ability of upgrading 9 3 3 1 9 9 9 1 9 9 9 2 2 5 2.5 5.0 0.045
10. Cost saving 9 1 1 9 9 9 1 1 9 9 3 3 1 5 5.0 15.0 0.134
11. Ease of transferring

the subject matter 
9 1 1 9 5 5 1 3 9 9 1 5 3 5 1.7 8.5 0.076

12. Short learning time 5 3 3 9 5 5 1 1 9 9 1 5 5 5 1.0 5.0 0.045
13. Ease of use 9 1 5 9 9 9 1 1 9 9 3 5 5 5 1.0 5.0 0.045
14. Can be modified to

high school students 
9 1 3 9 9 9 3 3 9 9 3 5 5 5 1.0 5.0 0.045

Absolute importance 8.53 1.32 4.16 7.82 7.17 8.03 2.84 2.37 7.97 8.00 2.6 60.8 111.7 0.998
Relative importance 0.14 0.02 0.07 0.13 0.12 0.13 0.05 0.04 0.13 0.13 0.04  
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2.4   Failure Analysis and Maim Problems Encountered with Previous Robots 
and Possible Solutions 

Another method used for selecting the design methods was failure analysis where 
poor design practice was analyzed. We reviewed many of the previous robots 
available description and data, including interviews with teams, reading project 
reports, observing failures of robots from previous competitions, and getting the 
robots performance in local and international competitions. Upon organizing and 
sorting the data, we found the following as the main problem issues. 

1. Need for several hardware and software changes and modifications. We found 
that it was common among many teams to totally redesign their robot more than once. 
The most appropriate solution to this kind of problem would be implementing 
conceptual design methods.  

2. Malfunction equipment. Sometimes robots are not qualified in their trial runs 
due to malfunctioning equipment. A solution to this could be to introduce checkers 
that identify sensor failure and upon identifying the above failure, change the position 
control.  

3. We observed that high school students in general had difficulties in designing 
reliable robot speed and position control. The students had difficulties to calculate or 
experimentally find the proper gains of the PID control loop and were not aware what 
was happening with the robot control. They knew the formality needed for 
implementing the control but they knew neither the essence of it nor how to decide on 
proper gains. In some cases, the improper gain values caused the robot to be too slow 
or too fast, and as a consequence the robot hit the wall. The use of fuzzy logic control 
could remedy these difficulties.  

4. When students reached the design stage, they stated the robot requirements 
among their team members in an ambiguous way. There was also lack of ability to 
test and debug the robot, because of contradicting or unclear requirement definitions. 
The ATR method would address these problems.  

5. Occasionally, the teams did not overcome the problems properly. Solving these 
problems was possible if the students would apply a creative thinking method  
like ASIT.  

6. The last noticeable group of problems was the difficulty to follow and debug an 
ASM algorithm; in many occasions the students did not cover all possible situations. 
Using an FSM algorithm might inherently prevent these situations. In FSM, all states 
and transitions must be declared and taken care off, and it is easy to find an uncovered 
situation. Hence, translating the ASM to FSM is important, and was done by 
microprogramming techniques, which also allow for integrating several sub 
algorithms and saving code. 

2.5   Another FMEA Analysis of Adapting the Design Methods for High School 
Students 

In order to reduce the chances of failing with this methodology in the particular 
context in which it was implemented, we exercised FMEA and tried to think of the 
issues that could make it fail and to produce some counter measures. As the students 
were inexperienced, we had to adapt the methodology to their lack of engineering 
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mathematics skills and experience. This led to preparing an appropriate training 
course for these students and designing the curriculum to enable logical teaching to 
the students. Another critical issue that we faced was the modification of industry 
methods to suit the teaching environment of a high school where students lack 
prerequisite knowledge. Next, we will describe the modifications made to each of the 
design methods for their inclusion in the course material.  

Conceptual design: The teaching of conceptual design requires no prerequisite 
knowledge; however, the time constraint forced a short version that was modified to 
suit the needs of the students. The stages of problem definition, and identifying 
customer needs with subjects, such as how to interview the customer, making focus 
groups, preparing customer surveys and handling customer complaints, were not 
taught because contest rules can be regarded as stating the problem and covering the 
customer needs. Only a small part of benchmarking was taught, as there was no 
identical commercial product to test against. There were robots from the year before, 
which were analyzed by the teams in comparison to their robots. 

Creative/inventive thinking: ASIT was taught completely as it requires no special 
background and could easily be taught to the students in a short time. Another 
assisting factor in using ASIT was that we had an accessible simple training material 
that could be distributed to students for home practice.  

Fuzzy logic: As the designers were high school students, no intensive mathematics 
background was introduced. The fuzzy logic (FL) control subject was introduced to the 
students as a technical straightforward procedure. The students learned to create the 
variable membership functions, adapted to the capabilities of the microcontroller they 
used; derive the fuzzy rules; and receive the output variable for further processing.  

Robot control: Robot control was taught using an innovative teaching method built 
upon the use of dual representations. The method was taught without the intensive 
mathematical manipulations. It is further explained through the microprogramming 
subject.  

Atomic Requirements: This method was taught completely. It requires no special 
background and could easily be taught to the students in a short time.  

Microprogramming: Microprogramming is an approach to teaching a number of 
subjects related to computer hardware. We adapted microprogramming for designing 
robotics systems. The main idea of this adaptation is based on considering a robotics 
system to be a composition of two units: a control unit and an operational unit [12]. 
The operational unit of the system includes such building blocks as motors, sensors, 
lamps, manipulators, etc. The control unit receives information from the operational 
unit and produces a sequence of control signals that results in executing desired 
operations by the operational unit. Usually microprogramming is a subject that is 
studied at the undergraduate level. It is built on a number of strong prerequisites 
including introductory logic design and programming. For introducing the subject into 
the high school robotics course, we have developed a specific “microprogramming 
curriculum” including a number of well formulated formal notations and definitions. 
The curriculum skips some technical details connected to specific computer 
architecture. Further, the presented microprogramming concept includes only a Finite 
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State Machine (FSM) based microprogrammed controller, and not the classical Wilks 
architecture. It allows presenting the concept of microprogramming in a simpler 
manner and makes it practically productive for the process of robotics design. 

Fault Tolerant Design: All fault tolerant (FT) components are useful in robotics 
systems design. Particularly, the robotics design described in this study includes one 
necessary component for fault tolerant design, which is the self-checking design. Within 
high school curriculum, the self-checking design was based on the development of 
specific redundant units, so-called checkers. The main goal of the checker is to prevent 
entering incorrect data to the control and operation parts of the robotics system. Students 
are able to construct checkers for robotics systems by using a number of standard 
solutions for the checkers design. These solutions are based on fundamental principles 
of self-checking design: fault secure and self-testing property. Students had to develop 
an appropriate checker and also prove it's self-checking.  

Within the current course design, the mathematics involved with FL, microprogram-
ming and FT was too complicated. Yet, even by eliminating the mathematical details, 
there was sufficient benefit to teach these methods and use them. We considered 
teaching neural networks control but found it too complicated and of little importance. 
We also considered teaching 3D modeling and schematic software but the teaching 
overhead and the software cost would not justify their inclusion. 

2.6   The Chosen Methods for the Design Methodology and AHP Analysis of 
Design Methods Selection  

To conclude, besides the general confidence about introducing design methods into 
the classroom, we used three guidelines to design the design methodology to teach: 
(1) addressing poor design practice by previous years’ teams; (2) introducing methods 
that had high impact on attaining course’s goals; and (3) avoiding complex methods. 
The six methods selected are complementary and cover the complete design process; 
they include: Conceptual design, ASIT creative thinking method, ATR design, Fault 
tolerance design, Microprogramming design, and Fuzzy logic control design. 

Within the scope of the possible robotics design methods, these have an important 
role or influence over the product quality and its performance in field conditions. 
Moreover, these methods allow appreciating issues beyond the original goals. For 
example, fuzzy logic allows appreciating that mathematics is not always about precise 
numbers. In fact, a great deal of engineering reasoning is qualitative and imprecise 
[13]. Fuzzy control demonstrates that imprecise concepts lead to very robust behavior 
that is relatively easy to attain.  

Subsequent to identifying the design methods, two experts used AHP [4] to 
prioritize the methods in order to allocate them the necessary teaching resources. It 
was agreed that conceptual design is the most important method (importance 42% out 
of 100% for one expert and 34% for the second). The method that was secondly 
important was fault tolerance and testability (19% and 22%, respectively). The expert 
agreed on the following four methods but differed in the order of importance that they 
assigned to each method. Nevertheless, the expert assessment and our own judgment 
were quite consistent. After the relative importance evaluation, and given the stringent 
teaching hours limit, we decided to teach subsets of these design methods that deemed 
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critical to the robot design or that would contribute significantly to other course goals. 
The findings and the experience from the first year of conducting this research 
approve the effectiveness of these methods.  

3   Implementation, Evaluation and Validation of the Design 
Methodology 

The resulted methodology was taught fully or partially in three schools and traditional 
design study was taught in a fourth school. The teaching in all of the four schools was 
conducted in parallel. The parallel tracks ended with measurement, evaluation, and 
comparison between the four schools. 

In order to evaluate and validate the methodology we followed the principles 
presented by Nevo [14], and Marshall [15]. The following points support the design 
methodology validation. 

1. Nevo's structure for evaluation recommendation items like evaluation 
background, the conceptual frame, the questions which the evaluation tried to 
answer on, and methods, and outcomes, are covered and described in this 
paper.  

2. All the design methods included in the methodology are known and proved to 
be efficient and effective. 

3. The criteria for testing the design methodology are clear and can easily be tested. 
4. The methods within the design methodology are complete and orthogonal. 
5. The testing and validation process was done in large scale within three years: 

pilot study in the year 2003, full implementation in the year 2004, and transfer 
implementation in the year 2005. In each phase, a careful research work was 
done. The implementation in four schools among 127 students and 7 teachers 
further supports the validation of the methodology. 

6. All results are measurable.  
7. The methods in the methodology were chosen from a larger list. Moreover, as 

we state that the methodology is context dependent; it might and probably will 
change in the case of different contexts. 

4   Discussion 

Through careful design, implementation, and testing, we developed a design methodology 
for robotics systems. We described the process of deriving the design methodology and 
the importance of context dependent design. In this case, we made adaptations related to 
the context of the design, namely: high school students, high school environment, the 
product, and the contest. Each of the six methods had its own special contribution to the 
design, to the product of the design – the mobile robot- and to the students. The students 
were aware of the design methods they learned and we observed that the students 
developed abilities to apply the proper design methods to specific problems they 
encountered in the project.  
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We argue that design is context dependent. We showed that taking into account the 
specific design conditions leads to a tailored design methodology. We believe that 
with the same design methodology approach, technology courses can be taught in 
universities and industry, yielding even more profound benefits to designers. 
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Abstract. Opponent Modeling is one of the most attractive and practical arenas 
in Multi Agent System (MAS) for predicting and identifying the future behav-
iors of opponent. This paper introduces a novel approach using rule based ex-
pert system towards opponent modeling in RoboCup Soccer Coach Simulation. 
In this scene, an autonomous coach agent is able to identify the patterns of the 
opponent by analyzing the opponent's past games and advising own players. For 
this purpose, the main goal of our research comprises two complementary parts: 
(a) developing a 3-tier learning architecture for classifying opponent behaviors. 
To achieve this objective, sequential events of the game are identified using en-
vironmental data. Then the patterns of the opponent are predicted using statisti-
cal calculations. Eventually, by comparing the opponent patterns with the rest 
of team's behavior, a model of the opponent is constructed. (b) designing a rule 
based expert system containing provocation strategies to expedite detection of 
opponent patterns. These items mentioned are used by coach, to model the op-
ponent and generate an appropriate strategy to play against the opponent. This 
structure is tested in RoboCup Soccer Coach Simulation and MRLCoach was 
the champion at RoboCup 2006 in Germany. 

1   Introduction 

Multi Agent System is one of the sub-disciplines of artificial intelligence which was 
introduced for the purpose of defining the rules and principles for developing com-
plex systems and provides a mechanism for cooperating the agents [1], [2]. In real-
time environments, multi agent systems need agents that are able to act automatically 
as members of a team. Modeling opponent in our multi agent system environment 
predicts the future behaviors of opponent and proposes an appropriate counteraction 
[3]. RoboCup is an MAS environment and opponent modeling plays a crucial role in 
this context. In this domain, every team is defined as a group of autonomous agents 
which are connected to a server and play a simulated soccer [4]. Coach agent of the 
team, receives the complete and noiseless information from the field and in order to 
enhance the performance sends messages in format of the standard coach language, 
called CLang, to its players [5], [6]. 
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Recently emphasizing on opponent modeling, coach competition has regulation 
changed been, so that coach becomes in charge of identifying the weaknesses and 
strengths of the opponent (patterns), from other behaviors of the opponent (base strat-
egy). The 2006 coach competition rule defines pattern and base strategy as: 

Pattern: A simple behavior that a team performs which is predictable and exploitable 
for the coaches. 

Base strategy: The general strategy of the test team regardless of the pattern in it. 
To exemplify this, a pattern may be a sequence of consecutive passes between 

some particular players, clearing the ball to the outside of penalty area by defenders, 
or any different formation of players between pattern and base strategy  

Our work is focused on opponent modeling and online pattern identification. For 
this purpose, MRLCoach receives the previous plays of the opponent as two log files 
of pattern and base strategy, and by analyzing them identifies the events occurred 
such as pass, shoot, dribble, etc. Then for pattern recognition, chi-square test [7], [8], 
issued to analyze the possible relation between an event and a sequence of previously 
occurred events. The eventual model of the opponent could be a collection of multiple 
identified patterns. Now, using a radix tree [9], we compare constructed models from 
the pattern and base strategy log files and store the differences as the final model of 
the opponent in the model repository. Finally, coach makes models for each of the 
pattern and base strategy log files. Opponent Provocation could be considered as a 
new problem in MAS environment. In RoboCup coach domain, this goal means for 
each identified behavior of opponent, a strategy is constructed to activate this behav-
ior in online game. Hence Rule Based Expert System is recruited to expose the appro-
priate strategies for opponent provocation. Thereupon, in online mode, by observing 
the opponent behavior, coach looks for an appropriate strategy for it in Knowledge 
Base. Once an instance is found, it is sent to the players. In online mode, observing 
the live game, coach exposes an online model of the opponent and compares it with 
the stored models in repository. When a matching online model is identified, coach 
reports it as the current opponent model to the server. The remainder of this paper is 
organized as follows: At first, we introduce the soccer server environment, second, a 
3-tier learning architecture for predicting and exposing the opponent behavior is pre-
sented. Afterwards, we explain how rule based expert system proposes a proper strat-
egy against the opponent team and how the process of learning is accomplished in 
online game. Continuing on, section 4 presents the results of our experiments in de-
tails. The final section of this paper is devoted to the future works. 

2   The Environment  

The RoboCup simulation league uses the Soccer Server System [4] to simulate the field 
and the players. Each player has to be a unique process that connects via a standard 
network protocol to the server. The players receive video and audio information every 
150 msec over the network and can issue primitive actions like kick, dash, turn, turn-
neck and say every 100 msec. The server processes the actions of the players and gener-
ates new visual information. The rest of information consists of the distances and angles 
to other players, the ball and landmarks. The players can only perceive objects that are 
in their field of vision and both the visual information and the execution of the actions 
are noisy. Additionally, the accuracy and amount of sensory information decreases with 



542 R. Fathzadeh, V. Mokhtari, and M.R. Kangavari 

the distance of objects. Communication between the clients is only allowed if it passes 
via the server, considering the fact that bandwidth and hear range are limited. 

An extra client on each team can connect as a coach, who can see the whole field 
and send strategic information to clients when the play is stopped, for example for a 
free-kick. In the soccer server, a coach agent has three main advantages over a stan-
dard player. First, a coach has given a noise-free omniscient view of the field at all 
times. Second, the coach is not required to execute actions in every simulator cycle 
and can, therefore, allocate more resources to high-level considerations. Third, in 
competition, the coach has access to log-files of past games played by the opponent, 
which can provide to important strategic insights. 

3   Coach Framework 

Coach agent behavior comprises of two phases: In Opponent Behavior Acquisition 
phase, raw data is received from the environment, and events of the game are identi-
fied using statistical calculation. Then the opponent behaviors are classified as pat-
terns. In Opponent Provocation phase, pattern recognition process is expedited. Here  
a rule based expert system is being used to opponent provocation. Figure 1 shows the 
general architecture of coach. 
 

 

 
 

Fig. 1. MRLCoach architecture: event tracking, pattern recognition, comparing models and 
opponent provocation 
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3.1   Opponent Behavior Acquisition 

Before starting the game, coach is provided with a set of prepared patterns and base 
strategies of the opponent's past games. By analyzing this information, coach exposes 
the occurred events. Then, using the chi-square test, expected patterns in a log file are 
identified. Constructed model of the opponent is a set of these patterns. This model is 
compared with the model created from base strategy. Their difference is stored as a 
final model of the opponent for online use. During the game, online coach receives 
the match's information and analyzes play of the opponent with similar methods used 
in offline phase and compares the created model with those already existing in the 
repository and reports a matching one as the current opponent model to the server. 

The main goal of coach is to mine the opponent behavior. For this purpose, we 
classify the possible behaviors in a simulated match to different classes such as for-
mation, pass, shoot, dribble, hold, etc., some of which are divided into subclasses. For 
instance, the pass class has the following 3 subclasses: direct pass, pass graph and 
closed pass graph [10], [11]. 

The opponent modeling process is comprised by event tracking, pattern recogni-
tion and comparing models. 

Event Tracking. The first step in modeling the opponent is to detect the events oc-
curred in a game. Event tracking consists of breaking problem down into two individ-
ual and multi agent behaviors [12]. For tracking these behaviors, raw data including 
play mode, positions and velocities of both the players and the ball are gathered from 
the field. Then by identifying the ball owner in every cycle, the individual behaviors, 
namely pass, shoot, dribble, hold and intercept are exploited. After identification of 
the individual behaviors, in a next higher level, multi agent behaviors such as forma-
tion, defending system, offending system and pass graphs are recognized.  

Pattern Recognition. A pattern is a sequence of events appeared in a game sufficient 
number of times, which is predictable and exploitable. In order to treat the sequence 
of events identified at the previous section as patterns, we have recruited the chi-
square test: 
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Which Oi is the observed frequency of an event, Ei is the expected frequency of an 
event and k is the number of random variables. 

As an example for recognition of pass pattern, 29 observed passes for the player 2 
are shown in the frequency table 1. 

Table 1. Use of chi-square test in recognition of pass pattern 

 Player 3 Player 4 Player 5 Total 

Observed Pass (O) 4 9 16 29 

Expected Pass (E) 2.9 5.8 20.3 29 

(O-E)2 / E 0.417 1.765 0.910 3.092 
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The columns of this table contain players receiving the pass. The first and the sec-
ond rows have respectively the numbers of observed and expected passes. Based on 
our experience in recognition of pass pattern, we consider the expected frequency to 
be at least 70% of the total of observed passes to the player with maximum number of 
receives. The total in the third row is the calculated chi-square value. Now, we should 
compare the chi-square value we calculated, χ2=3.092, with the χ2 value read from the 
table of χ2 [13], with n-1 degrees of freedom (where n is the number of categories 
which is the number of pass receiver players, 3 in our case). So we have only 2 de-
grees of freedom. From the χ2 table, we find the critical value of 5.99 with probabil-
ity=0.05. 

Because the calculated value of 3.092 is less than 5.99, our assumption is though ac-
ceptable. This means in 95% of the cases the calculation of pass pattern is significance. 

Comparing Models. A model of the opponent is a set of detected patterns. We store 
this model using radix tree ADT. For each of the pattern or base strategy log files, a 
radix tree is created. Afterwards, it is necessary to compare these radix trees to sug-
gest the final opponent model. The difference between pattern radix tree and base 
radix tree determines the final model of the opponent that is stored in a third radix 
tree in model repository. Actually each node of this tree is a node existing in pattern 
radix tree but not in base radix tree.  

After all the possible models of the opponent are exposed from the log files in the 
offline section, in the online mode, we are to identify the current model of the oppo-
nent in real-time. To accomplish this, in each game, by receiving the information 
from the field, events and patterns of the opponent are identified with similar methods 
used in offline; then an online model of the opponent is created. Unlike the offline 
mode where model of the opponent is identified by comparing the log files of pattern 
and base strategy, in online mode, a current model is compared to a collection of 
previous models of the opponent. Hence, some similarities or conflicts between pat-
terns are possible. To preclude erroneous reports, our policy is to store the similar or 
conflicting patterns in a specific table. To deal with these similarities or conflicts, we 
carry on computations until they are distinguished. In this case, if these conflicts are 
not settled until the end of the game, reporting is not allowed. 

3.2   Opponent Provocation 

One of the other policies applied in online section is the selection of a suitable strat-
egy to motivate the opponent players to disclose the expected patterns. For this pur-
pose, we have used rule based expert system architecture to provide a provoking 
strategy for opponent players. Rule-based systems are computer systems that use rules 
to provide recommendations or diagnoses, or to determine a course of action in a 
particular situation or to solve a particular problem [14], [15]. To design such rule-
based architecture, the patterns identified in offline mode are considered as antece-
dents and the consequents are strategies for opponent provocation which are built 
with the assistance of a human expert. We store these ordered pairs of patterns and 
strategies as rules in our Strategy Library. To present an appropriate strategy, the 
Forward Chaining method is used. In a way that by receiving observations from the 
environment, we search in strategy library for a rule whose condition part is identical  
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to these observations. In this case, this rule is triggered and its action part is sent to the 
players as provoking strategy. Therein one of the outstanding problems of this system 
is Conflict Resolution. This means that it is probable that more than one rule are quali-
fied to be fired. There are several conflict resolution strategies, such as choosing the 
most recent activated, the least frequently triggered, etc. The most suitable conflict 
resolution strategy is priority-based: assigning a priority value to every rule and se-
lecte the fired rule with the highest priority. In the case that several rules have the 
highest priority value, a random selection is performed. To deal with this problem we 
have benefited from prority-baseed conflict resolution. 

With this method, coach can select the best possible strategy to provoke opponent 
players. This increases the accuracy of reporting pattern and speeds up pattern recog-
nition. Figure 2 illustrates some used provocation strategies. 

 

 

Fig. 2. Example of provocation strategies 

What we have mentioned here about opponent provocation could be considered as 
a novel approach in Opponent Modeling. 

Two examples are given here to clarify the idea. 

− Let's assume that the opponent pattern is offside trap. In this case, we should put 
our players in offside situation. Therefore the candidate strategies which have the 
properties and can be used to activate opponent behavior could be "move forward" 
or "through pass". Meanwhile the game, by observing the first occurrence of off-
side trap, if the offside fact is found in strategy library, "move forward" or 
"through pass" strategy is activated. 

− Let the opponent behavior be a simple direct pass e.g. a pass from player 9 to play-
er 10. For this case, our strategy is "handing ball to player 9 of opponent". 

Eventually these strategies are advised to players in the format of standard coach 
language. This structure is completely implemented and tested at the RoboCup com-
petitions. In the following section, our experiments are explained in full detail. 

4   Experimental Result 

The MRL team acquired the 1st place among 10 participated teams in RoboCup 2006 
competition. This competition had 3 rounds, each consisting of 4 iterations. In every 
round, nearly 15 to 20 patterns are fed to the log analyzer. The participants are re-
sponsible for creating these patterns. According to coach regulation, teams should 
provide at least 3 patterns for each round and active patterns for the iterations are also 
selected by them. Log analyzer has an average of 5 minutes to process a pattern. 

ReleaseOpp()
If (OppModel = HoldBall) 

AttackBall() 
If (OppModel = Pass)   HandingBall() 
If (OppModel = Offside)  ThroughPass() 
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Meanwhile the game, online coach should identify and report the activated patterns 
within 10 minutes. The score of a team depends on both the number of correct de-
tected patterns and the time of report. In the first round, our team placed second. After 
making some slight modification to the parameters in the algorithms used to reduce 
the noise, we attained the first place in the second round and could pass to the final 
round without any wrong reports. Although most of the patterns in the final round 
were chosen from the patterns which other teams had prepared, our team took the 
greatest score. MRL detected 10 correct patterns from 18 activated patterns that equal 
the sum of all identified patterns of other teams in this round. The final round results 
and the ranks of teams are depicted in table 2. 

Table 2. Total scores in the final round of the competition for the top 4 finishers 

Team 
Iteration 1 
Score Rank1 

Iteration 2 
Score Rank2 

Iteration 3 
Score Rank3 

Iteration 4 
Score Rank4 

Final 
Rank 

MRL 67583.59 1 40857.6 1 51311.25 1 91578.75 1 4 

UT Austin 44649.99 2 -4739.40 4 9548.5 3 9543.75 2 11 

Caspian 11200.0 3 -4000.0 3 15000.0 2 -8000.0 4 12 

Pasargad -9282.0 4 2475.199 2 -9282.0 4 5418.0 3 13 

 
The results of RoboCup 2006 competitions showed that MRL had well-deserved 

victory for being champion. And despite of lots of similarities and conflicts between 
the patterns, we had the least wrong reports number among all the teams, in the way 
that in the final round from a total of 26 wrong reports just one of them was ours. 

5   Conclusion and Future Work 

In this paper, we presented a novel architecture for modeling the opponent in coach 
competition. MRLCoach is an agent that is fully implemented and has been success-
fully tested in RoboCup competition. Providing this learning structure, MRL team 
took the 1st place in RoboCup 2006 coach competition. Our unparalleled performance 
in the competition has convinced us that the recipe for our success had been our capa-
bility in the handling of the noises and conflicts. Pattern categorization and noise 
handling are of prominent factors in our success in the competition. The trick in ad-
vising our players to motivate the opponent players to demonstrate the patterns had 
also assisted us in identifying the opponent behaviors simpler and sooner. 

Opponent provocation could be considered as a novel approach in MAS for achiev-
ing a specific goal. This method can be applied to arenas such as military applications 
and other adversarial domains in order to give strategies to provoke and trap the en-
emy. In the future, our study will be focused on optimization of opponent provocation 
system to expedite opponent modeling and make this process more accurate. 
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Abstract. Color segmentation is typically the first step of vision processing for 
a robot operating in a color coded environment, like RoboCup soccer, and many 
object recognition modules rely on that, in this paper we present a method for 
color segmentation that is based on fuzzy logic. Fuzzy sets are defined on the 
H, S and L components of the HSL color space and provide a fuzzy logic model 
that aims to follow the human intuition of color classification. The membership 
functions used for the fuzzy inference are optimized by genetic algorithms. The 
method requires the setting of only a few parameters and has been proved to be 
very robust to noise and light variations, allowing for setting parameters only 
once. The approach has been implemented on MRL middle size robots, and 
successfully experimented in the numbers of the friendly matches of the Middle 
size in the 2006's games. 

Keywords: Color classification, Image segmentation, fuzzy classification, Ge-
netic Algorithms, Soccer robot. 

1   Introduction 

Many color vision systems require the first step of classifying pixels in a given image 
into a discrete set of color classes. This early vision step plays an important role in 
soccer robot because RoboCup soccer is a color-coded environment, where colors are 
used to define principal objects introducing specific concepts for robots. Recognition 
and positioning of colored beacons and goals in the field are used for self-localization 
and reactive behaviors, while the recognition of the orange ball feeds behaviors and 
coordination tasks. 

Good color segmentation allows for easy implementation of object recognition and 
localization, most of the robot vision systems are based on fast and accurate imple-
mentation of such process. Most of the teams recognize and locate objects from a 
rough segmentation (e.g. [1]), applying more sophisticated recognition techniques 
(e.g., region growing) at a later stage. However, this second approach may be less 
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reliable or require more computational resources. According to [2], fuzzy approaches 
for image segmentation can be categorized into four classes: segmentation via thresh-
olding, segmentation via clustering, supervised segmentation, and rule-base segmen-
tation. Among these categories, rule-base approaches are able to take advantage of 
application dependent heuristic knowledge, and model them in the form of fuzzy 
rules. In [3], a set of fuzzy rules are established based on fuzzy variables, which are 
associated with the membership values of pixels obtained by the fuzzy c-mean clus-
tering approach (FCM) [4] and the possibilistic c-mean clustering approach (PCM) 
[5], to construct a correction matrix for modifying the fuzzy partition matrix. In [6], a 
fuzzy reasoning method in conjunction with genetic algorithms is employed for color 
image segmentation through region merging. 

In this paper we present an approach to color segmentation that has been used for 
RoboCup soccer in the Middle size league (also applicable for other usages). The aim 
of our work is to retrieve images according to their dominant(s) color(s) expressed 
through linguistic expressions and implementing in our vision system. In this paper a 
Genetic Algorithms for an automatic production of the optimized fuzzy rules has been 
employed. The results of performing this method on experimental data have demon-
strated the efficiency of the method. 

2   Color Spaces 

MRL robots have many limitations that must be considered in the development of 
their vision system: low computational power and low quality of the color image. 
Therefore, many of the state-of-the-art segmentation techniques in the literature can-
not be implemented in real-time application and do not have optimal results. 

HSL space (Hue, Lightness and Saturation) is a space that characterizes the color 
directly thanks to its hue. In this space saturation corresponds to the quantity of 
"white" in the color and lightness corresponds to the light intensity of the color. Thus, 
the identification of color is made in two steps: first H, then L and S. the HSL space 
can be represented through a cylinder or a bi-cone (figure 1). The hue H is an angle, it 
means that its definition interval loops (0 and 255 are the same points). The "pure" red 
((255,0,0) in RGB space) corresponds to an angle equal to 0 for h, a saturation s equal 
to 255 and a lightness l equal to 128. 

 

 
 

Fig. 1. The HSL space (wikipedia.org) 
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In our work, we limit ourselves to the nine fundamental colors defined by the set T 
representing a good sample of colors (dimension H): 

T = (red, orange, yellow, green, cyan, blue, purple, magenta, pink) 

T corresponds to the seven colors of Newton [7] to which we have added color 
pink and color cyan, that are included in the rainbow color set. 

3   Color Representation 

Another important point about spaces is the problem of uniformity of the scale. HSL 
space is quite convenient for our problem but it is a non UCS (uniform color scale) 
space [8]. Indeed our eyes don't perceive small variations of hue when color is green 
(h = ±85) or blue (h = ±170) while they perceive it very well with orange (h = ±21) 
for example. Thus to model the fact that the distribution of colors is not uniform on 
the circle of hues, Truck et al. propose to represent them with trapezoidal or triangular 
fuzzy subsets [9]. Several other works have been done in the field of none uniformly 
distributed scales: for example, Herrera and Martinez use fuzzy linguistic hierarchies 
with more or less labels, depending on the desired granularity [10]. 

Similarly, [9] associate colors with fuzzy sets. Indeed, for each color of T they built 

a membership function varying from 0 to 1 ( tf with t∈T). If this function is equal to 

1, the corresponding color is a "true color" (cf. figure 2). 
For each fundamental color, the associated interval is defined according to linguis-

tic names of colors. For some colors, we obtain a wide interval. It is the case for the 
colors "green" and "blue" which are represented by trapezoidal fuzzy subsets.  

 

 
Fig. 2. The dimension H 

 

Fig. 3. Trapezoidal fuzzy subset 
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A trapezoidal fuzzy subset is usually denoted (a; b; α; β) (cf. figure 3) and when 
the kernel is reduced to one point, it is a triangular subset denoted by (a; α; β) since 
a= b [11]. 

To complete the model, it is necessary to take into account the two other dimensions 
(L and S). Each colorimetric qualifier is associated to one or both dimension(s). To 
facilitate the process, each dimension interval is divided into three sub-intervals: low 
value, average value and strong value. Thus, we obtain six "one dimension-dependent" 
qualifiers and nine "two dimension-dependent" qualifiers [12] denoted by Q. 

Q = {somber, dark, deep, gray, medium, bright, pale, light, luminous}. 
 
Figure 4 shows the nine "two dimension-dependent" qualifiers. 

 

 

Fig. 4. Fundamental color qualifiers 

 
Each qualifier of Q is associated to a membership function varying between 0 and 

1 ( qf
~

with q ∈2 Q). Every function is represented through the 3 dimension-set (a; b; 

c; d; α; β; γ; δ) (cf. figure 5) As for the hues, the intersection point value of these 
functions is also supposed equal to 1/2 (cf. figure 6). 

 

  

Fig. 5. Trapezoidal 3-D fuzzy subset Fig. 6. Dimensions L and S 
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The membership function of any qualifier q is defined below: 
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4   Optimization of Membership Functions by Genetic Algorithms 

In this section, we explain the method of optimizing the membership functions by 
genetic algorithms. Since the parameters of fuzzy membership function has a great 
effect on performance of our classification thus by using genetic algorithms we can 
optimize fuzzy parameters to minimize the error in fuzzy classification. 

Genetic algorithms are search algorithms based on the mechanics of natural selec-
tion and natural genetics [13]. Genetic algorithms have three operations: a) crossover 
operation, b) mutation operation, c) selection operation. 

Each membership function of H, S and L forms a trapezoid in this method. One of 
the membership functions is encoded to the three real numbers defined by the trape-
zoid. We regard these real numbers as a gene. Figure 7 shows the encoding of the 
membership functions.Because three membership functions are required by each 
reference vector in HSL space, the number of genes needed to express the classifica-
tion rule is three times the number of vector in HSL space. The classification rule is 
encoded as a string using these genes. First, the string shaving random genotypes are 
taken as the initial population. In the crossover operation, some pairs of strings are 
selected as parents. One of the parents is selected according to its classification abili-
ties, and another is selected at random. A crossover position is randomly selected on 
each pair of strings. Two new offspring strings are made by swapping real numbers 
after that position. In the mutation operation, each gene of the offspring is changed for 
a random real number with an occurrence probability. Before the selection operation, 
the strings are evaluated with the training samples. Evaluation is done using an objec-
tive function called 
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Fig. 7. Encoding of the membership function 

The fitness function: 

(2))( 33221100 kkkk EWEWEWEWkf +++=  

Where F(k) is fitness value of the k-th string: kE0 is the classification rate, kE1  is 

average of the difference from μ for the correct color to the other μ; kE2 is the aver-

age of the difference from the membership value for the correct color of each parame-

ter to the same value for the other  colors; kE3 is the average width of the member-

ship function; 0W , 1W , 2W  and 3W are the eight for each parameter. 

In the selection operation, the strings are selected according to their fitness values. 
Some strings whose fitness value is low are removed from the population. This opera-
tion keeps the size of the population constant. This method requires a search of a wide 
solution space because a real number is used as a gene. Therefore, we use the random 
search operation with the three operations; each string can search the narrow space 
around itself before the selection operation. The number of searching trials and the size 
of the Space searched are kept constant when a string finds a string more suitable than 
itself; the genes of the string are changed to these of the more suitable string. This op-
eration makes it possible to search a wide space in detail without a large size of the 
population. Simulations of classification were performed using data measured by a 
prototype color sensor-whose measuring geometries were 0 illuminated and 45 re-
ceived. Optimization was performed for classification of the dealt colors. Classification 
rate: 100%, where output fluctuation: ±0.2 the same simulations were performed with 
the conventional method using permissible ranges. As result classification rate: 88.4% 
from the comparison of these results, we confirmed the effectiveness of this method. 

5   Experimental Result 

The Training Data have been captured from colorful images of middle size robots in 9 
color sets (Red, Orange, Yellow, Green, Cyan, Blue, Purple, Magenta and Pink), 
under various lights intensities in our lab. The goal was to make this segmentation 
resistant in different lights and make sure that this segmentation is still performed 
correctly in variation of light.  
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Fuzzy system had three inputs each representing one of the dimensions of HSL. 
For the dimension H, 10 membership functions, for L and S, 3 and for the output 9 
permanent membership functions were considered. Experimental results of some of 
test images are reported. In order to show the effectiveness of this method to object  
classification in field of MSL matches, we compared the classification ability of this 
method with that of the conventional one. The colors of object to be classified were 
relatively analogous. When objects contain different substances, they must be sepa-
rated. In the case of highly analogously colored object, the classification is difficult 
because of the color and light non-uniformities.  

The causes of the non-uniformity of the GA’s parameters were as follows: popula-
tion size was 100; number of offspring created by crossover operation was 50 for each 
generation; and occurrence probability of mutation was 5%. The classification rule 
that had a maximum fitness value at the 100th generation was evaluated for its classi-
fication ability. In the simulations 100 datum for each color were classified. 

The same simulations were performed by the conventional method. In this method, 
the permissible ranges were obtained from a minimum and a maximum value of some 
classification trials. Therefore, the permissible ranges were yielded by the training 
samples used for this method. The simulation results were compared with those of 
this method. The results show that the proposed method is more robust against color 
non-uniformity and light illuminating non-uniformity. When color and light fluctua-
tions were 5 % and 15 %, respectively, the classification rates in this method were 
100% and 96. 3 %, respectively; the rates in the conventional method were 91.4 % 
and 78.3%, respectively. 

 

   

Fig. 8. Sample of color classification by this method in MRL 

6   Conclusion 

We have developed a robust vision for MRL robots with use of fuzzy sets and GA. 
This improved vision would help our Behavior Management System the possibility to 
work with hierarchies of informed behaviors, improved coordination mechanism, 
improved self-localization and improved color classification to solve the problem of 
shadow blades on the field.  
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Effectiveness of this method compared to the conventional method is clear. When 
color and light fluctuations were 5 % and 15%, the classification rates in this method 
were 100% and 96. 3 %, respectively; the rates in the conventional method were 91.4% 
and 78.3%, respectively. Thus, changing the color or light of robots surrounding  
environment can be a possible threat for its rival. Color calibration can be undertaken 
more quickly, as the calibration method encourages the human trainer to identify all 
possible pixel values for each color of interest, rather than avoiding those that may 
cause misclassification (e.g. those that occur in shadow or on the borders of different 
objects within the image). Recently, object recognition has also improved, not only due 
to image segmentation performance, but because of object recognition routines which 
can result in recognition of different levels of color uncertainty indicated by core colors, 
maybe colors, and unknown colors. 
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Abstract. In this paper, we propose a control system that changes the
compliance based on the walking speed to stabilize biped walking on
rough terrain. The proposed system changes walking modes depends on
its walking speed. In the downhill terrain, when the walking speed in-
creases, the stiffness of the ankle in the support phase is controlled so
as to brake the increased speed. In the uphill terrain, when the walking
speed decreases, the stiffness of the waist joint is controlled and the de-
sired trajectory for the supported leg is shifted so as not to falls down
backward. To validate the efficiency of the proposed system, the stability
of walking with the proposed system is examined in the two dimensional
dynamics simulation. It is shown that the robot with the proposed sys-
tem can walk in the more variable rough terrain and with the broader
walking speed than without changing the stiffness of the joints.

1 Introduction

Biped walking algorithms are divided roughly into two categories; the model-
based walking and dynamics based walking. In the former algorithm, the precise
parameters of a robot and the environment are needed to calculate the control
parameters such as zero moment point. However, this strategy needs a robot
to sense the surface of the floor in advance precisely. Other groups realizes the
walking on rough terrain with special mechanisms in the foots. Yamaguchi et al.
[1] developed the foot mechanism with which a robot can sense the relative
position and absolute inclined angle of the ground. With that mechanism, they
realized the walking on the terrain with different levels in real time control.
Hashimoto et al. [2] developed a parallel-linked biped walker with the semi-active
adaptive ground mechanism that realizes the stable support area on the ground
with small different levels. Both strategies extended in model-based approach
realized the walking rough terrain only in the very limited way; statical walking
with special mechanisms in foots.

However, humans seem to realize rough terrain walking in very different ways
from these approaches. Human walking seems to utilize the dynamics of the body
efficiently without precise sensing of the ground state [3]. The approach to realize
a biped walking by using the dynamics of the body is called dynamics-based
walking approach. Owaki et al. investigates the effect of the non-linear springs

U. Visser et al. (Eds.): RoboCup 2007, LNAI 5001, pp. 556–563, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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on robustness of passive running [4]. Taga et al. [5] proposed a CPG (Central
Pattern Generator) for biped walking, and showed that it can realize the robust
walking on the flat floor and uniform slopes thanks to global entrainment of the
body, control and environment dynamics. Miyakoshi [6] proposed the memory
based control with which a robot can walk on known slope and the rolling slope.
However, in these studies, the setting of the rough terrain is very limited and
there have been few studies to investigate the possibility of dynamics based
walking on rough terrain.

The rough terrain we treated in this paper has the random different levels
and gradients that are relatively small to the robot body. On this terrain, the
proposed controller enables a robot to walk stably without sensing the ground
state by utilizing the compliance control.

In the following, first, the basic idea of the controller is introduced. Then, the
effectiveness of the proposed controller is shown in the simulation experiments.
Finally, the discussion and conclusion is given.

2 Walking on Rough Terrain

In daily life, there are various types of surfaces in the ground. Depending on
the difference of the levels or the tilting angle of the ground, human changes its
walking pattern. Here, we categorizes the rough terrain into two categories. The
first category of rough terrain is the small rough terrain, in which the difference of
the levels is relatively small compared with the length of the body. To stabilize
the walking on this type of the floor, the controller should have the feedback
property to go back to the normal walking automaticaly. The second category
is the large rough terrain like the staircase or the steep slope. For walking on
this type of terrain, human should know the state of the floor in advance by the
visual information. In this paper, we treat the two dimensional walking for the
first type of floor, in which a robot can automatically recover its walking against
the small disturbance.

One of the reasons for falling down during walking on rough terrain is the ex-
cess decrease or increase of the kinetic energy caused by the difference levels. The
proposed controller can compensate this energy disturbance so that it prevents
a robot from falling down in forward or backward way. In the following, first,
the basic controller for walking in the flat floor is introduced. Then, the rough
terrain whose difference of levels are small relative to the body are classified into
three groups;

rough downslope: The angle of the inclination of the ground changes ran-
domly, but always negative.

rough upslope: The angle of the inclination of the ground changes rondomly,
but always positive.

rough terrain: The angle of the inclination changes rondomly, positively and
negatively.

and the stabilizing control modes for these groups are introduced.
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Fig. 1. The phases of walking controller

2.1 Base Control

The basic walking controller changes the control method depending on the walk-
ing phase (Fig. 1). In the first phase of the swing phase, the constant torque is
applied to the waist and the knee joints of the swing leg. In the second phase,
no torques are applied and the swing leg moves only by the inertial force. In the
third phase, the proportional-derivative (PD) control is applied to the waist and
knee joints to realize the landing posture that is determined in advance. In the
stance phase, PD control is used to bring the stance leg backward. This control
method can realize the torque pattern similar to the human walking [7].

The torque τ applied to the joint is given by the following equation,

τ = −Kp(θ − θd) − Kv(θ̇ − θ̇d) + τd, (1)

where θ and θ̇ are the current position and speed of the joint angle, θ and θ̇ are
the desired position and speed of the joint angle, and Kp and Kv are the gains
for PD control, respectively. The desired angle in PD control θd is calculated by
the following simple cosine function,

θd =
{

θf−θ0

2 (1 − cos πt
T ) + θ0 (t < T )

θf (t ≥ T )
(2)

where θ0 and θf are the initial and end angle of the joint in the phase, respec-
tively, and t and T are the current time and the transition time to the next
phase. This controller realizes a stable walking in the flat floor. However, on
rough terrain, a robot easily falls down. In order to realize the stable walking
on rough terrain, the compliance property is added to the control in the stance
phase, as explained in the following section. The complicance (stiffness) of the
joint angles are realized by changing the gains of PD control, Kp and Kv.

2.2 Control for Rough Downslope

In the rough downslope, in which the inclination angle of the ground changes
rondomly in negative value, the typical cause of falling down is the excess increase
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of the kinetic energy. To suppress the increase of walking speed, when the body
of the speed exceeds certain threshold, the stiffness of the foot joint in the first
stance phase is made high. The stiffness of the joint angle is determined by
the gain of PD control, thus the control is simply described by the following
equation,

Kp =
{

Kdown
3p (V > V down)

K3p (V ≤ V down) , (3)

where Kp is the proportional gain of the foot joint in the stance leg, V is the
walking speed of the body, V down is the threshold of the walking speed, and
K3p, K

down
3p are the high and low constant values.

2.3 Control for Rough Upslope

In the rough upslope, in which the inclination angle of the ground changes ron-
domly in positive value, a robot falls down backward because of the excess de-
crease of the kinetic energy. To prevent the decrease of the kinetic energy, when
the walking speed is lower than the certain threshold, the desired joint angle of
the conroller in the stance leg phase is changed. The stance leg phase is divided
into the first half and the last half phases.

Control for the first half of the stance phase. When a robot is described
by a simple inverted pendulum, walking is modeled as ascending the potential
energy. When the initial speed is low and the kinetic energy is lower than the
potential energy, the robot falls down backward. However, if the stance leg is
made shorter and the hight of the center of mass is made lower, the potential
energy to get over becomes lower. Thus, to make the height of the center of mass
lower, when the walking speed becomes lower, the controller bends the knee joint
more with high gain of PD control. However, the gain of the waist and foot joints
are made lower. This lower stiffness enables a robot to keep the trunk upright
and makes foot fit to the ground without the detail information about the rough
terrain. When the vertical position of the body xbody proceeds the supporting
point xheel, the PD gains of waist and foot are got back to high gain.

Control of the last half of the stance phase. When the walking speed is
still low in the last half of the stance phase, further control is applied. Another
solution to prevent the falling down backward is to increase the walking energy
by extending the ankle joint in the last half of the stance phase. It is necessary to
set the PD gain of the ankle joint not so high so that the weight shifts smoothly.
Moreover, the desired posture at the end of the stance phase is also changed
as the stance leg does not go so backward (to make the relative position of the
body to the supporting point higher than usual.) Just after this control phase,
the feed forward torques of the first swing phase that are applied to waist and
knee joints are augmented than usual so that the swing leg contacts with the
ground. The gain control in the rough upslope can be sumarized as Fig. 2.
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Fig. 2. Change of Kp in upslope phase

2.4 Rough Terrain

The walking system for general rough terrain can be constructed by integrating
the controlers for rough upslope and downslope above mentioned. The integrat-
ing controller for one leg is described in Fig. 3 (a). In this figure, “upslope” and
“upslope’” are the walking modes for the first and last half of the stance leg in
upslope, respectively. Whether the controller enters the control phase “upslope’”
depends on the walking speed, V ′

h, which is the walking speed when the opposite
leg contacts with the ground. Thus, the controllers for right and left legs inter-
acts each other as shown in Fig. 3 (b). In the following section, the effectiveness
of the proposed controller is examined in the simulation experiments.
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Fig. 3. Walking control system for rough terrain
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3 Experimental Results

3.1 Simulation Setting

Controller. Fig. 4 shows the robot model used in the simulation experiments.
The robot consits of 7 links; one upper body, two thighs, two shanks and two soles.

Here, “Downslope1” and “Downslope2” are the control phases “Downslope
phase” in case of V > V down and V < V down, respectively. “Upslope1” and
“Upslope2” are the control phases “Upslope phase” in case of xbody < xheel

and xbody > xheel, respectively. “Upslope’1” is the first swing phase “Swing1”
just after “Upslope phase’”. “Upslop’3” is the third swing phase “Swing3” just
after “Upslope phase”. The joint angles are set to 0 [deg] when the robot stands
upright, and anticlockwise is set as the positive direction. The desired posutre
in each phase θf = 25 [deg] and θ̇f = 0 [deg/sec] are given.

Upper Body 
(3.0 [kg], 0.5 [m])

Thigh
(0.5 [kg], 0.3 [m])

Shank
(0.5 [kg], 0.3 [m])

Sole
(0.2 [kg], 0.08 [m])

Hip

Knee

Ankle
x

yz

x

yz

Fig. 4. Robot model

The thresholds for phase transition in respective control phases are V down =
0.6 [m/sec], V down

h = 0.85 [m/sec], and V up
h = 0.6 [m/sec]. The PD gains to keep

the trunk upright are Kwp = 5000 [Nm/rad] and Kwv = 10 [Nm sec/rad]. The
limitation of the torques in each joint is set as 10 [Nm].

Rough terrain. The rough terrains used in the simulation experiments are con-
structed by the polygonal lines. The i-th ground position (X(i), Z(i)) is defined
by the following equations,

X(i) = X(i − 1) + X0R (4)
Z(i) = Z(i − 1) + Z0(R − 0.5) (5)

where R is the random number from 0 to 1. X0 and Z0 are the constant values
that determines the degree of the roughness of the ground.

Fig. 5(a) shows the averaged walking steps with and without the proposed
controller in relation to the roughness degree, Z0 and X0 = 0.05[m]. The number
of maximam steps is 20 and 10 trials are examined in each roughness. The graph
shows the robustness improves compared with the walking without the proposed
controller. Fig. 5(b) is the time sequences of the walking with and without the
proposed controller when the roughness of the ground is set as X0 = 0.05 and
Z0 = 0.023 [m].
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Fig. 5. Average of walking steps for uneven surface

(a) Without control for uneven surface

(b) With control for uneven surface

Fig. 6. Walking on uneven rough surface

4 Conclusion

This paper proposes a walking controller that enables a robot to walk on the
rough terrain by changing the compliance of joints without sensing the state of
the surface of the ground.

To apply the proposed controller to a real robot, there are many problems
to be left. First, the current control model is restricted to two dimensional.
The motions on the frontal plane affects to that on the sagittal plane. It is
the next challenge to develop the controller for the stabilization of the motions
on the sagittal plane. The second problem is the slips on walking. The current
simulator does not consider the slips between the feets and the ground. In the
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real situation, the steeper the slope is, the more the robot slips. Third, the
most difficult problem is the actuators. In this paper, we modeled the simple
PD controller and the various types of the stiffness are realized by changing the
gains of PD controller. However, the real DC motors that are usually used in
humanoid robots are difficult to realize the low stiffness. Moreover, it is difficult
to design the robot that utilizes the dynamics of the body with DC motors
because power/weight ratio of DC motors are not good. The pneumatic actuators
may be the possible candidates for dynamics based humanoid robots [8].
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